• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessing the effects of the neonicotinoid insecticide imidacloprid in the cholinergic synapses of the stellate cells of the mouse cochlear nucleus using whole-cell patch-clamp recording

Thumbnail
Date
2010
Author
Bal, R. and Erdogan, S. and Theophilidis, G. and Baydas, G. and Naziroglu, M.
Metadata
Show full item record
Abstract
Imidacloprid (IMI) is widely used systemic insecticide that acts as an agonist on nicotinic acetylcholine receptors (nAChRs). IMI has been reported to be more active against insect nAChRs (EC50 0.86-1 μM) than it is against mammalian nAChRs (EC50 70 μM). The objective of this study was to determine to what extent IMI affects the nAChRs of the stellate cells of mouse cochlear nucleus (CN), using whole-cell patch-clamp recording. Puff application of 1 μM IMI had no significant effect on the membrane properties of the neurons tested, while a concentration of 10 μM caused a significant depolarizing shift in the membrane potential and resulted in increases in the fluctuation of the membrane potential and in the frequency of miniature postsynaptic potentials (mpps) within less than a minute of exposure. IMI at concentrations ≥50 μM caused a significant depolarizing shift in the membrane potential, accompanied by a marked increase in the frequency of action potential. IMI decreased the membrane input resistance and the membrane time constants. Bath application of 50 μM d-tubocurarine (d-TC) reversibly blocked the depolarizing shift of the resting membrane potential and the spontaneous firing induced by IMI application in current clamp and blocked the inward currents through nicotinic receptors induced by IMI application in voltage clamp. Similarly, 100 nM α-bungarotoxin (α-BgTx) blocked the spontaneous firing induced by IMI (n = 3). The amplitude of the 100 μM IMI-induced inward current at -60 mV holding potential was 115.0 ± 16.2 pA (n = 7). IMI at a concentration of 10 μM produced 11.3 ± 3.4 pA inward current (n = 4). We conclude that exposure to IMI at concentrations ≥10 μM for <1 min can change the membrane properties of neurons that have nAChRs and, as a consequence, their function. © 2009 Elsevier Inc. All rights reserved.
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-74249102208&doi=10.1016%2fj.neuro.2009.10.004&partnerID=40&md5=7273834fc0abed1e1066a54a9919cabd
http://acikerisim.bingol.edu.tr/handle/20.500.12898/5112
Collections
  • Scopus İndeksli Yayınlar Koleksiyonu [1357]





Creative Commons License
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 



| Politika | Rehber | İletişim |

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV