Show simple item record

dc.contributor.authorŞiar, Z.
dc.date.accessioned2021-04-08T12:09:12Z
dc.date.available2021-04-08T12:09:12Z
dc.date.issued2015
dc.identifier10.1142/S1793042115500414
dc.identifier.issn17930421
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84928551380&doi=10.1142%2fS1793042115500414&partnerID=40&md5=d79f5719a1d1db4b592aaac8cd3e1cfa
dc.identifier.urihttp://acikerisim.bingol.edu.tr/handle/20.500.12898/4774
dc.description.abstractLet P and Q be nonzero integers. Generalized Fibonacci and Lucas sequences are defined as follows: U0 = 0, U1 = 1, and Un+1 = PUn + QUn-1 for n ≥ 1 and V0 = 2, V1 = P, and Vn+1 = PVn + QVn-1 for n ≥ 1, respectively. For all odd relatively prime values of P and Q such that P ≥ 1, we determine all indices n and m such that Vn = wVmx2 or VnVm = wx2 with w = 1, 2, 3 or 6 under the assumptions P2 + 4Q > 0 and Vm ≠ 1 for all positive integers m. © 2015 World Scientific Publishing Company.
dc.language.isoEnglish
dc.sourceInternational Journal of Number Theory
dc.titleOn square classes in generalized Lucas sequences


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record