• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-category EEG signal classification developing time-frequency texture features based Fisher Vector encoding method

Thumbnail
Tarih
2016
Yazar
Alçіn, Ö.F. and Siuly, S. and Bajaj, V. and Guo, Y. and Şengu¨r, A. and Zhang, Y.
Üst veri
Tüm öğe kaydını göster
Özet
Classification of electroencephalogram (EEG) signals plays an important role in the diagnosis and treatment of brain diseases in the biomedical field. Here, we introduce a different multi-category EEG signal processing technique, namely time-frequency (T-F) image representation of Gray Level Co-occurrence Matrix (GLCM) descriptors and Fisher Vector (FV) encoding for automatic classification of EEG signals. Firstly the EEG signals are converted into T-F representation by using spectrograms of Short Time Fourier Transform (STFT), which are used to obtain the T-F images. The obtained T-F images are then converted into 8-bits gray-scale images and then are divided into five sub-images corresponding to the frequency-bands of the rhythms. Then, the GLCM texture descriptors are employed to extract distinctive features which are fed into the FV encoding. Finally obtained features are fed to extreme learning machine (ELM) classifier as input for identifying abnormalities from EEG signals. The proposed method was applied to epileptic and sleep stages EEG datasets. The experimental outcomes are promising on both databases. It can be anticipated that upon its implementation in real-time practice, the proposed scheme will assist the researchers and physicians to advance the existing methods for detecting neurological diseases from EEG signals. © 2016 Elsevier B.V.
Bağlantı
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994168897&doi=10.1016%2fj.neucom.2016.08.050&partnerID=40&md5=7d48ac0a32102dffe6f6c0d3b55aedc7
http://acikerisim.bingol.edu.tr/handle/20.500.12898/4594
Koleksiyonlar
  • Scopus İndeksli Yayınlar Koleksiyonu [1357]





Creative Commons License
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 



| Politika | Rehber | İletişim |

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy TypeBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy Type

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV