Show simple item record

dc.contributor.authorSiar, Z. and Keskin, R.
dc.date.accessioned2021-04-08T12:07:39Z
dc.date.available2021-04-08T12:07:39Z
dc.date.issued2018
dc.identifier10.3906/mat-1702-102
dc.identifier.issn13000098
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85050719669&doi=10.3906%2fmat-1702-102&partnerID=40&md5=b85825eb3db66fecd3bfa4d829fb4b4a
dc.identifier.urihttp://acikerisim.bingol.edu.tr/handle/20.500.12898/4402
dc.description.abstractLet P and Q be nonzero integers. Generalized Fibonacci and Lucas sequences are defined as follows: U0(P,Q) = 0;U1(P,Q) = 1, and Un+1(P,Q) = PUn(P,Q)+QUn-1(P,Q) for n ≥ 1 and V0(P,Q) = 2, V1(P,Q) = P, and Vn+1(P,Q) = PVn(P,Q) + QVn-1(P;Q) for n ≥ 1; respectively. In this paper, we assume that P and Q are relatively prime odd positive integers and P2 + 4Q > 0: We determine all indices n such that Un = (P2 + 4Q)x2: Moreover, we determine all indices n such that (P2 +4Q)UNn = x2: As a result, we show that the equation V2 n (P; 1)+V2 n+1(P; 1) = x2 has solution only for n = 2; P = 1; x = 5 and V 2 n+1(P;-1) = V 2 n (P;-1) + x2 has no solutions. Moreover, we solve some Diophantine equations. ©TÜBITAK.
dc.language.isoEnglish
dc.sourceTurkish Journal of Mathematics
dc.titlePythagorean triples containing generalized lucas numbers


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record