Show simple item record

dc.contributor.authorKeskin, R. and Şiar, Z.
dc.date.accessioned2021-04-08T12:07:07Z
dc.date.available2021-04-08T12:07:07Z
dc.date.issued2019
dc.identifier10.4134/CKMS.c170261
dc.identifier.issn12251763
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061606769&doi=10.4134%2fCKMS.c170261&partnerID=40&md5=13a2dfedff143355e75881b2d78d1f9e
dc.identifier.urihttp://acikerisim.bingol.edu.tr/handle/20.500.12898/4218
dc.description.abstractLet a,b,P, and Q be real numbers with PQ 6≠ 0 and (a,b) 6≠ (0,0). The Horadam sequence (W n ) is defined by W 0 = a, W 1 = b and Wn = PW n-1 + QW n-2 for n ≥ 2. Let the sequence (X n ) be defined by Xn = W n+1 + QW n-1 . In this study, we obtain some new identities between the Horadam sequence (X n ) and the sequence (Xn). By the help of these identities, we show that Diophantine equations such as x 2 - Pxy - y 2 = ±(b 2 - Pab - a 2 )(P 2 + 4), x 2 - Pxy + y 2 = -(b 2 - Pab + a 2 )(P 2 - 4), x 2 - (P 2 + 4)y 2 = ±4(b 2 - Pab - a 2 ), and x 2 - (P 2 - 4)y 2 = 4(b 2 - Pab + a 2 ) have infinitely many integer solutions x and y, where a, b, and P are integers. Lastly, we make an application of the sequences (X n ) and (X n ) to trigonometric functions and get some new angle addition formulas such as sin rθ sin(m + n + r)θ = sin(m + r)θ sin(n + r)θ - sinmθ sin nθ; cos rθ cos(m + n + r)θ = cos(m + r)θ cos(n + r)θ - sinmθ sin nθ; and cos rθ sin(m + n)θ = cos(n + r)θ sinmθ + cos(m - r)θ sin nθ. © 2019 Korean Mathematical Society.
dc.language.isoEnglish
dc.sourceCommunications of the Korean Mathematical Society
dc.titleSome new identities concerning the Horadam sequence and its companion sequence


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record