Basit öğe kaydını göster

dc.contributor.authorHanbay, K. and Talu, M.F. and Faruk Özgüven, Ö. and Öztürk, D.
dc.date.accessioned2021-04-08T12:07:06Z
dc.date.available2021-04-08T12:07:06Z
dc.date.issued2019
dc.identifier10.32710/tekstilvekonfeksiyon.448737
dc.identifier.issn13003356
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063950487&doi=10.32710%2ftekstilvekonfeksiyon.448737&partnerID=40&md5=7da975fae53bbc90c47dc80c7caf4a73
dc.identifier.urihttp://acikerisim.bingol.edu.tr/handle/20.500.12898/4215
dc.description.abstractThis paper proposes a vision-based fabric inspection system for the circular knitting machine. Firstly, a comprehensive fabric database called Fabric Defect Detection Database (FDDD) are constructed. To extract significant features of fabric images, shearlet transform is used. Means and variances are calculated from all subbands and combined into a high-dimensional feature vector. The proposed system is evaluated on a circular knitting machine in a textile factory. The real-time performance analysis is only carried out by inspecting single jersey knitted fabric. Our proposed system achieves the highest accuracy of 94.0% in the detection of single jersey knitting fabric defects. © 2019 Ege Universitesi. All rights reserved.
dc.language.isoEnglish
dc.sourceTekstil ve Konfeksiyon
dc.titleReal-time detection of knitting fabric defects using shearlet transform


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster