Show simple item record

dc.contributor.authorTürkoğlu, M. and Hanbay, D.
dc.date.accessioned2021-04-08T12:07:05Z
dc.date.available2021-04-08T12:07:05Z
dc.date.issued2019
dc.identifier10.17341/gazimmfd.423674
dc.identifier.issn13001884
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069826759&doi=10.17341%2fgazimmfd.423674&partnerID=40&md5=6e53239e6e29afbdcd3fe49763778ad1
dc.identifier.urihttp://acikerisim.bingol.edu.tr/handle/20.500.12898/4209
dc.description.abstractTo date, different approaches have been used to be correctly identified of plant species. Leaves are the most important approaches as part of the plants which provide many features with advantages such as shape, color and vein texture. In this study, a new approach based on the geometrical properties of the leaf has been proposed. This method called Edge Step (ES), consists of features such as angle, center-edge length and edge distance by using edge points in the shape boundary curve. In addition, Shearlet Transform method, which has features such as good sensitivity to tissue identification, rapid calculation and directional independence, is used. In addition to these methods, Color features and Gray-Level Co-Occurrence Matrix (GLCM) method to extract color and texture properties from leaf images have been applied. Attributes derived from all these methods were tested with the Extreme Learning Machine (ELM) classifier method as separately and combination. The proposed study has been tested by using four different plant leaf datasets such as Flavia, Swedish, ICL and Foliage. Using these datasets, studies based on texture, shape and color characteristics have been compared with the performance of the proposed approach. As a result, the proposed method is identified to be more successful than the other methods. © 2019 Gazi Universitesi Muhendislik-Mimarlik. All rights reserved.
dc.language.isoTurkish
dc.sourceJournal of the Faculty of Engineering and Architecture of Gazi University
dc.titlePlant recognition system based on extreme learning machine by using shearlet transform and new geometric features [Shearlet dönüşüm ve yeni geometrik özellikler kullanılarak aşırı öğrenme makinesine dayalı bitki tanıma sistemi]


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record