Hemi-slant ξ⊥−Riemannian submersions in contact geometry
dc.contributor.author | Sari, R. and Akyol, M.A. | |
dc.date.accessioned | 2021-04-08T12:06:29Z | |
dc.date.available | 2021-04-08T12:06:29Z | |
dc.date.issued | 2020 | |
dc.identifier | 10.2298/FIL2011747S | |
dc.identifier.issn | 03545180 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099960094&doi=10.2298%2fFIL2011747S&partnerID=40&md5=684260a40d8d92317219fd3ea1f3d2d3 | |
dc.identifier.uri | http://acikerisim.bingol.edu.tr/handle/20.500.12898/3965 | |
dc.description.abstract | M. A. Akyol and R. Sarı [On semi-slant ξ⊥-Riemannian submersions, Mediterr. J. Math. 14(6) (2017) 234.] defined semi-slant ξ⊥ −Riemannian submersions from Sasakian manifolds onto Rie-mannian manifolds. As a generalization of the above notion and natural generalization of anti-invariant ξ⊥−Riemannian submersions, semi-invariant ξ⊥ −Riemannian submersions and slant submersions, we study hemi-slant ξ⊥ −Riemannian submersions from Sasakian manifolds onto Riemannian manifolds. We obtain the geometry of foliations, give some examples and find necessary and sufficient condition for the base manifold to be a locally product manifold. Moreover, we obtain some curvature relations from Sasakian space forms between the total space, the base space and the fibres. © 2020, University of Nis. All rights reserved. | |
dc.language.iso | English | |
dc.source | Filomat | |
dc.title | Hemi-slant ξ⊥−Riemannian submersions in contact geometry |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Scopus İndeksli Yayınlar Koleksiyonu [1357]
Scopus Indexed Publications Collection