Show simple item record

dc.contributor.authorAykutoglu, G. and Tartik, M. and Darendelioglu, E. and Ayna, A. and Baydas, G.
dc.date.accessioned2021-04-08T12:06:22Z
dc.date.available2021-04-08T12:06:22Z
dc.date.issued2020
dc.identifier10.1007/s11033-020-05607-z
dc.identifier.issn03014851
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087521235&doi=10.1007%2fs11033-020-05607-z&partnerID=40&md5=b071a1366b8c0553379cc07c61b707a1
dc.identifier.urihttp://acikerisim.bingol.edu.tr/handle/20.500.12898/3896
dc.description.abstractA relationship exists between hyperhomocysteinemia and cardiovascular diseases, although the underlying mechanisms are still incompletely defined. One possibility involves a homocysteine (Hcy)-induced increased oxidative stress. Melatonin (Mel) and vitamin E (vitE) are important anti-oxidants. The main purpose of this study was (1) to compare the effect of treatments with Mel, vitE or both, on Hcy-induced apoptosis in human umbilical vein endothelial cells (HUVECs), and (2) to investigate the underlying mechanisms. Cell proliferation assay was carried out by Water Soluble Tetrazolium-1 (WST-1) assay kit. Apoptotic index was calculated by TUNEL Assay. Anti-oxidant parameters were studied by measurement of reactive oxygen species (ROS) and lipid peroxidation (LPO) levels. mRNA and protein expression levels of apoptotic and anti-apoptotic genes and proteins were studied by quantitative real time polymerase chain reaction (qRT-PCR) and Western blotting experiments respectively. The results showed that treatments with Mel, vitE or Mel + vitE suppressed Hcy-induced cell death, with a higher efficiency for the Mel and Mel + vitE treatments. Our results suggests that the mechanisms by which these anti-oxidants protected endothelial cells include the decrease in ROS and LPO levels, an increase in cell migration, the downregulation of pro-apoptotic proteins Cas 3, Cas 9, Cyt C and Bax and the upregulation of anti-apoptotic protein Bcl 2. Collectively, these results revealed the protective role of vitE and Mel against Hcy-induced cell apoptosis, which may add insight into therapeutic approaches to Hcy-induced damages. © 2020, Springer Nature B.V.
dc.language.isoEnglish
dc.sourceMolecular Biology Reports
dc.titleMelatonin and vitamin E alleviate homocysteine‐induced oxidative injury and apoptosis in endothelial cells


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record