The Effect of TIGAR Knockdown on Apoptotic and Epithelial-Mesenchymal Markers Expression in Doxorubicin-Resistant Non-Small Cell Lung Cancer A549 Cell Lines
Date
2020Author
Agca, C.A. and Kırıcı, M. and Nedzvetsky, V.S. and Gundogdu, R. and Tykhomyrov, A.A.
Metadata
Show full item recordAbstract
Resistance to chemotherapeutic drugs is a critical problem in cancer therapy, but the underlying mechanism has not been fully elucidated. TP53-induced glycolysis regulatory phosphatase (TIGAR), an important glycolysis and apoptosis regulator, plays a crucial role in cancer cell survival by protecting cells against oxidative stress-induced apoptosis. In the present study, we investigated whether TIGAR is involved in epithelial-mesenchymal transition (EMT) in doxorubicin (DOX)-resistant human non-small cell lung cancer (NSCLC), A549/DOX cells. We found that the expression of TIGAR was significantly higher in A549/DOX cells than in the parent A549 cell lines. siRNA-mediated TIGAR knockdown reduced migration, viability and colony survival of doxorubicin-resistant lung cancer cells. Also, TIGAR knockdown decreased pro-survival protein Bcl-2 and increased pro-apoptotic Bax and cleaved poly (ADP-ribose) polymerase (PARP). Moreover, TIGAR depletion significantly up-regulated both caspase-3 and caspase-9 expression. Furthermore, TIGAR depletion up-regulated the expression of E-cadherin and down-regulated the expression of vimentin. These results indicate that TIGAR knockdown may inhibit EMT in doxorubicin (DOX)-resistant human NSCLC and may represent a therapeutic target for a non-small lung cancer cells chemoresistance. © 2020 Wiley-VHCA AG, Zurich, Switzerland
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090091992&doi=10.1002%2fcbdv.202000441&partnerID=40&md5=c7c5684b1357093dc28c70d380275559http://acikerisim.bingol.edu.tr/handle/20.500.12898/3875
Collections
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..