Basit öğe kaydını göster

dc.contributor.authorAydin, S.G. and Bilge, H.S.
dc.date.accessioned2021-04-08T12:06:11Z
dc.date.available2021-04-08T12:06:11Z
dc.date.issued2020
dc.identifier10.1109/SIU49456.2020.9302106
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85100321714&doi=10.1109%2fSIU49456.2020.9302106&partnerID=40&md5=67950ae5ae88d5acde3e59ecac431f22
dc.identifier.urihttp://acikerisim.bingol.edu.tr/handle/20.500.12898/3860
dc.description.abstractIn this study, FPGA based implementation of sigmoid activation function, which is frequently used in Artificial Neural Networks (ANNs) applications, is performed by using two different approaches. Designs have been coded using VHDL. For the representation of real numbers in digital systems, a 32-bit single-precision floating-point number system is used. Basic arithmetic units such as addition, multiplication and division have been created for these number systems. In this paper, Altera Cyclone V FPGA integrated circuit has been used for designing feedforward artificial neural network to solve XOR problem. As a result of the study, it is seen that the first approach, which is the piecewise linear approach, produces results for XOR problem with zero error. © 2020 IEEE.
dc.language.isoTurkish
dc.source2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings
dc.titleFPGA based implementation of sigmoid function using different approaches [Farkli yaklasimlar kullanarak sigmoid fonksiyonunun FPGA tabanli gerceklenmesi]


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster