• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Failure load prediction of adhesively bonded GFRP composite joints using artificial neural networks

Thumbnail
Tarih
2020
Yazar
Birecikli, B. and Karaman, Ö.A. and Çelebi, S.B. and Turgut, A.
Üst veri
Tüm öğe kaydını göster
Özet
There are different process parameters of bonding joints in the literature. The main objective of the paper was to investigate the effects of bonding angle, composite lay-up sequences and adherend thickness on failure load of adhesively bonded joints under tensile load. For this aim, the joint has four types of the bonding angles 30°, 45°, 60° and 75°. Composite materials have three different lay-up sequences and various thicknesses. The bonding angle, adherend thickness and composite lay-up sequences lead to an increase of the failure load. Moreover, artificial neural network that utilized Levenberg-Marquardt algorithm model was used to predict failure load of bonding joints. Mean square error was put into account to evaluate productivity of ANN estimation model. Experimental results have been consistent with the predicted results obtained with ANN for training, validation and testing data set at a rate of 0.998, 0.997 and 0.998 respectively. © 2020, The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature.
Bağlantı
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096231704&doi=10.1007%2fs12206-020-1021-7&partnerID=40&md5=4988f16ad4fc706d98cedad2fc1afcc0
http://acikerisim.bingol.edu.tr/handle/20.500.12898/3851
Koleksiyonlar
  • Scopus İndeksli Yayınlar Koleksiyonu [1357]





Creative Commons License
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 



| Politika | Rehber | İletişim |

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy TypeBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy Type

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV