dc.contributor.author | Şiar, Z. and Keskin, R. and Erduvan, F. | |
dc.date.accessioned | 2021-04-08T12:06:02Z | |
dc.date.available | 2021-04-08T12:06:02Z | |
dc.date.issued | 2021 | |
dc.identifier | 10.1007/s00574-021-00243-y | |
dc.identifier.issn | 16787544 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100710184&doi=10.1007%2fs00574-021-00243-y&partnerID=40&md5=08e87faee5550b6dc772da075b114060 | |
dc.identifier.uri | http://acikerisim.bingol.edu.tr/handle/20.500.12898/3804 | |
dc.description.abstract | In this study, we find all Fibonacci and Lucas numbers which can be expressible as a product of two repdigits in the base b. It is shown that the largest Fibonacci and Lucas numbers which can be expressible as a product of two repdigits are F12= 144 and L15= 1364 , respectively. Also, we have the presentation F12=144=6×(3+3·7)=(6)7×(33)7=4×(4+4·8)=(4)8×(44)8and L15=1364×(22222)4=2×(2+2·4+2·42+2·43+2·44). © 2021, Sociedade Brasileira de Matemática. | |
dc.language.iso | English | |
dc.source | Bulletin of the Brazilian Mathematical Society | |
dc.title | Fibonacci or Lucas Numbers Which are Products of Two Repdigits in Base b | |