Optical and structural properties of CuO nanofilm: Its diode application
Abstract
The high crystalline CuO nanofilms have been prepared by spin coating and annealing combined with a simple chemical method. The obtained films have been characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-vis (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy. Structural analysis results demonstrate that the single phase CuO on Si (1 0 0) substrate is of high a crystalline structure with a dominant in monoclinic (1 1 1) orientation. FT-IR results confirm the formation of pure CuO phase. UV-vis absorption measurements indicate that the band gap of the CuO films is 2.64eV. The PL spectrum of the CuO films shows a broad emission band centered at 467 nm, which is consistent with absorption measurement. Also, Au/CuO/p-Si metal/interlayer/semiconductor (MIS) diodes have been fabricated. Electronic properties (current-voltage) of these structures were investigated. In addition, the interfacial state properties of the MIS diode were obtained. The interface-state density of the MIS diode was found to vary from 6.21 x 10(12) to 1.62 x 10(12) eV(-1) cm(-2).
Collections
- Kimya [22]
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..