Basit öğe kaydını göster

dc.contributor.authorUcar, Ferhat and Alcin, Omer F. and Dandil, Besir and Ata, Fikret
dc.date.accessioned2021-04-02T12:03:26Z
dc.date.available2021-04-02T12:03:26Z
dc.date.issued2018
dc.identifier10.3390/en11010145
dc.identifier.urihttp://acikerisim.bingol.edu.tr/handle/20.500.12898/2449
dc.description.abstractMonitoring Power Quality Events (PQE) is a crucial task for sustainable and resilient smart grid. This paper proposes a fast and accurate algorithm for monitoring PQEs from a pattern recognition perspective. The proposed method consists of two stages: feature extraction (FE) and decision-making. In the first phase, this paper focuses on utilizing a histogram based method that can detect the majority of PQE classes while combining it with a Discrete Wavelet Transform (DWT) based technique that uses a multi-resolution analysis to boost its performance. In the decision stage, Extreme Learning Machine (ELM) classifies the PQE dataset, resulting in high detection performance. A real-world like PQE database is used for a thorough test performance analysis. Results of the study show that the proposed intelligent pattern recognition system makes the classification task accurately. For validation and comparison purposes, a classic neural network based classifier is applied.
dc.language.isoEnglish
dc.sourceENERGIES
dc.titlePower Quality Event Detection Using a Fast Extreme Learning Machine
dc.typeArticle


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster