• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • WOS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • WOS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pythagorean triples containing generalized Lucas numbers

Thumbnail
Date
2018
Author
Siar, Zafer and Keskin, Refik
Metadata
Show full item record
Abstract
Let P and Q be nonzero integers. Generalized Fibonacci and Lucas sequences are defined as follows: U-0(P, Q) = 0, U-1(P, Q) = 1, and Un+1(P, Q) = PUn(P, Q)+QU(n-1)(P, Q) for n >= 1 and V-0(P, Q) = 2, V-1(P, Q) = P, and Vn+1(P, Q) = PVn(P, Q)+QV(n-1)(P, Q) for n >= 1, respectively. In this paper, we assume that P and Q are relatively prime odd positive integers and P-2+4Q > 0. We determine all indices n such that U-n= (P-2 + 4Q)x(2) . Moreover, we determine all indices n such that (P-2+4Q)U-n = x(2). As a result, we show that the equation V-n(2)(P, 1)+V-n+1(2)(P, 1) = x(2) has solution only for n = 2, P = 1, x = 5 and V-n+1(2)(P, -1) = V-n(2)(P, -1)+x(2) has no solutions. Moreover, we solve some Diophantine equations.
URI
http://acikerisim.bingol.edu.tr/handle/20.500.12898/2442
Collections
  • WOS İndeksli Yayınlar Koleksiyonu [374]





Creative Commons License
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 



| Politika | Rehber | İletişim |

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV