• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • WOS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • WOS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tunable Plasmonic Silver Nanodomes for Surface-Enhanced Raman Scattering

Thumbnail
Date
2018
Author
Kahraman, Mehmet and Ozbay, Ayse and Yuksel, Handan and Solmaz, Ramazan and Demir, Baran and Caglayan, Humeyra
Metadata
Show full item record
Abstract
Surface-enhanced Raman scattering (SERS) is an emerging analytical method used in biological and non-biological structure characterization. Since the nanostructure plasmonic properties is a significant factor for SERS performance, nanostructure fabrication with tunable plasmonic properties are crucial in SERS studies. In this study, a novel method for fabrication of tunable plasmonic silver nanodomes (AgNDs) is presented. The convective-assembly method is preferred for the deposition of latex particles uniformly on a regular glass slide and used as a template for polydimethylsiloxane (PDMS) to prepare nanovoids on a PDMS surface. The obtained nanovoids on the PDMS are used as a mold for AgNDs fabrication. The nanovoids are filled with Ag deposition by the electrochemical method to obtain metallic AgNDs. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used for characterization of the structural properties of all fabricated AgNDs. The optical properties of AgNDs are characterized with the evaluation of SERS activity of 4-aminothiphonel and rhodamine 6G. In addition to experimental characterizations, the finite difference time domain (FDTD) method is used for the theoretical plasmonic properties calculation of the AgNDs. The experimental and theoretical results show that the SERS performance of AgNDs is strongly dependent on the heights and diameters of the AgNDs.
URI
http://acikerisim.bingol.edu.tr/handle/20.500.12898/2362
Collections
  • WOS İndeksli Yayınlar Koleksiyonu [374]





Creative Commons License
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 



| Politika | Rehber | İletişim |

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV