• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • WOS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • WOS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hyperspectral image classification using convolutional neural network and two-dimensional complex Gabor transform

Thumbnail
Tarih
2020
Yazar
Hanbay, Kazim
Üst veri
Tüm öğe kaydını göster
Özet
In this paper, a new hyperspectral image classification method based on 2-dimensional complex Gabor filtering and deep convolutional neural networks is proposed. Specifically, as a deep learning model, convolutional neural network is aimed to extract distinctive high-level features. Deep-learned and Gabor feature extraction methodologies are simultaneously performed on the input hyperspectral samples. Gabor features are calculated by implementing complex Gabor filtering only on the first three principal components of the hyperspectral image. The proposed hybrid model uses Gabor transform to obtain local image features, such as edges, corners and texture. The Gabor features of the images are calculated at multiple orientations and frequencies. Then, deep features and Gabor features are fused to obtain a more robust and discriminative feature vector. Hybrid feature vector is used as input to a softmax classifier for hyperspectral image classification. The parameters of the proposed deep learning architecture are optimized using a small training set. Thus, the over-fitting problem of the proposed convolutional neural network has been reduced to some extent. Experiments performed on two popular hyperspectral datasets show that the proposed method can achieve better classification performance than some conventional methods. Classification results demonstrates that the proposed hybrid model is an efficient method for feature extraction and classification of hyperspectral images.
Bağlantı
http://acikerisim.bingol.edu.tr/handle/20.500.12898/2063
Koleksiyonlar
  • WOS İndeksli Yayınlar Koleksiyonu [374]





Creative Commons License
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 



| Politika | Rehber | İletişim |

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy TypeBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy Type

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV