• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • WOS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • WOS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-Resolution Intrinsic Texture Geometry-Based Local Binary Pattern for Texture Classification

Thumbnail
Tarih
2020
Yazar
Alpaslan, Nuh and Hanbay, Kazim
Üst veri
Tüm öğe kaydını göster
Özet
In this paper, we propose a new hybrid Local Binary Pattern (LBP) based on Hessian matrix and Attractive Center-Symmetric LBP (ACS-LBP), called Hess-ACS-LBP.d The Hessian matrix provides the directional derivative information of different texture regions, while ACS-LBP reveals the local texture features efficiently.d To obtain the macro- and micro-structure textural changes, Hessian matrix is calculated in a multiscale schema.d Multiscale Hessian matrix presents the intrinsic local geometry of the texture changes.d The magnitude information of the Hessian matrix is used in the ACS-LBP method.d A cross-scale joint coding strategy is used to construct Hess-ACS-LBP descriptor.d Finally, histogram concatenation is carried out.d Extensive experiments on eight texture databases of CUReT, USPTex, KTH-TIPS2b, MondialMarmi, OuTeX TC\_00013, XU HR, ALOT and STex validate the efficiency of the proposed method.d The proposed Hess-ACS-LBP method achieves about 20\% improvement over the original LBP method and 1\%-11\% improvement over the other state-of-the-art hand-crafted LBP methods in terms of classification accuracy.d Besides, the experimental results show that the proposed method achieves up to 32\% better results than the state-of-the-art deep learning based methods.d Especially, the performance of the proposed method on ALOT and STex datasets containing many classes is remarkable.
Bağlantı
http://acikerisim.bingol.edu.tr/handle/20.500.12898/2060
Koleksiyonlar
  • WOS İndeksli Yayınlar Koleksiyonu [374]





Creative Commons License
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 



| Politika | Rehber | İletişim |

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy TypeBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy Type

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV