• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Preparation, characterization and hydrogen production performance of MoPd deposited carbon felt/Mo electrodes

Thumbnail
Date
2018
Author
Demir, D.D. and Salcı, A. and Solmaz, R.
Metadata
Show full item record
Abstract
Mo-coated carbon felt (C) supporting material modified by electrochemical deposition of trace amounts of MoPd binary composites having various metal ratios and characterized using various techniques. To our best knowledge, these materials is being reported firstly. The hydrogen evolution activity of the electrodes tested in 1 M KOH solution using electrochemical techniques. It shown that MoPd modified electrodes have large surface area, which is very beneficial for the rate of hydrogen evolution reaction (HER). Pd and Mo metals almost homogeneously distributes over the surface and no local aggregations are appeared. The loading of MoPd binary deposits over the Mo-coated C supporting material enhances the rate of the HER more and more when compared to the base substrate. The hydrogen evolution performance of the composites is depending on the metal ratios. The enhanced current density at the C/Mo-Mo50Pd50 electrode at −1.60 V(Ag/AgCl) is 79.1% with respect to the C felt and 48.1% with respect to the C/Mo modified supporting material. The reduction in resistance related to hydrogen gas releasing at 100 mV overpotential was 97.2% and 58.6% with respect to bare C felt and C/Mo supporting material. The high hydrogen releasing performance of the PdMo-modified electrocatalysts related to intrinsic catalytic activities of Pd and Mo, a possible synergism between these metals and enhanced real surface area of the electrode. The C/Mo-Mo50Pd50 electrode has excellent electrochemical and physical stability during the long time electrolysis. Therefore, it is expected that the procedure applied here contribute to literature since the modifying C support by an active metal provides activation of electrocatalysts. Due to superior properties, we can suggest C/Mo-Mo50Pd50 electrode as promising cathode material for industrial water electrolysis which can reduces the energy input. © 2018 Hydrogen Energy Publications LLC
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041600212&doi=10.1016%2fj.ijhydene.2018.01.030&partnerID=40&md5=80e96b24c1f68947e63c10855aa0609f
http://acikerisim.bingol.edu.tr/handle/20.500.12898/4333
Collections
  • Scopus İndeksli Yayınlar Koleksiyonu [1357]





Creative Commons License
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 



| Politika | Rehber | İletişim |

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV