• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aircraft detection system based on regions with convolutional neural networks

Thumbnail
Tarih
2020
Yazar
Ucar, F. and Dandil, B. and Ata, F.
Üst veri
Tüm öğe kaydını göster
Özet
Object detection in remote sensing imagery is an important topic of image processing researches. Detection of objects and regions from satellite imagery takes its place in various applications such as the detection of residential areas and agricultural lands, road lines, ships, as well as airport and hangar detections. As a more specific remote sensing imagery based object-detection process, a stationary aircraft detection system could serve as a model in some military applications. Such a model could serve the detection of stationary aircraft targets in airports. In the proposed study, a deep learning-based model detects the aircraft in the airports using the satellite images from Google Earth. The deep learning model uses the state of the art Regions with Convolutional Neural Network (RCNN). Firstly a built from scratch CNN design is used for the basic learning step of the system. Then, RCNN performs region detection, which anchors the stationary aircraft object bounding boxes. A large dataset containing aircraft images is preferred for training of CNN. To validate the system, satellite images captured from airports in Turkey are used. The results of the study show that the proposed model successfully operates aircraft detection with high-performance rates. While the classifier network structure, which constitutes the first step of the study, produces 98.4% test accuracy, the proposed aircraft detection framework has successfully performed the aircraft identification process by producing matched bounding boxes in the test images. © 2020, Ismail Saritas. All rights reserved.
Bağlantı
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092088282&doi=10.18201%2fijisae.2020363534&partnerID=40&md5=d2ac0835c49561a26926124da36adb35
http://acikerisim.bingol.edu.tr/handle/20.500.12898/3973
Koleksiyonlar
  • Scopus İndeksli Yayınlar Koleksiyonu [1357]





Creative Commons License
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 



| Politika | Rehber | İletişim |

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy TypeBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy Type

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV