Basit öğe kaydını göster

dc.contributor.authorYardım, A. and Kucukler, S. and Özdemir, S. and Çomaklı, S. and Caglayan, C. and Kandemir, F.M. and Çelik, H.
dc.date.accessioned2021-04-08T12:05:59Z
dc.date.available2021-04-08T12:05:59Z
dc.date.issued2021
dc.identifier10.1016/j.gene.2020.145239
dc.identifier.issn03781119
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85093686227&doi=10.1016%2fj.gene.2020.145239&partnerID=40&md5=4a137617a375901be8d5eeeccbdaa191
dc.identifier.urihttp://acikerisim.bingol.edu.tr/handle/20.500.12898/3775
dc.description.abstractDocetaxel (DTX) is a chemotherapeutic agent used in the treatment of various malignancies but is often associated with central and peripheral neurotoxicity. The aim of this study was to investigate the neuroprotective effect of silymarin (SLM) against DTX-induced central and peripheral neurotoxicities in rats. Rats received 25 and 50 mg/kg body weight SLM orally for seven consecutive days after receiving a single injection of 30 mg/kg body weight DTX on the first day. SLM significantly decreased brain lipid peroxidation level and ameliorated brain glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities in DTX-administered rats. SLM attenuated levels of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), glial fibrillary acidic protein (GFAP) and activity of p38α mitogen-activated protein kinase (p38α MAPK) whereas caused an increase in levels of neural cell adhesion molecule (NCAM) in the brain and sciatic nerve of DTX-induced rats. In addition, SLM improved the histological structure of the brain and sciatic nerve tissues and decreased the expression of c-Jun N-terminal kinase (JNK) in the sciatic nerve whereas increased cyclic AMP response element binding protein (CREB) expression in the brain induced by DTX. Additionally, SLM markedly up-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and B-cell lymphoma-2 (Bcl-2) and downregulated the expression of Bcl-2 associated X protein (Bax) in the brain and sciatic nerve tissues of DTX-induced rats. Our results show that SLM can protect DTX-induced brain and sciatic nerve injuries by enhancing the antioxidant defense system and suppressing apoptosis and inflammation. © 2020 Elsevier B.V.
dc.language.isoEnglish
dc.sourceGene
dc.titleSilymarin alleviates docetaxel-induced central and peripheral neurotoxicity by reducing oxidative stress, inflammation and apoptosis in rats


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster