T.C. BİNGÖL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ENERJİSİ 10-50 MeV ARALIĞINDA OLAN PROTON DEMETİ İLE SEÇİLEN HEDEF ELEMENTLERİN BOMBARDIMANI SONUCU OLUŞAN İZOTOPLARIN TESPİTİNİN TEORİK HESAPLAMA İLE YAPILMASI

YÜKSEK LİSANS TEZİ

ŞÜKRİYE ÇAKIR

FİZİK ANABİLİM DALI

TEZ DANIŞMANI Prof. Dr. İskender DEMİRKOL

EYLÜL-2019

T.C. BİNGÖL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ENERJİSİ 10-50 MeV ARALIĞINDA OLAN PROTON DEMETİ İLE SEÇİLEN HEDEF ELEMENTLERİN BOMBARDIMANI SONUCU OLUŞAN İZOTOPLARIN TESPİTİNİN TEORİK HESAPLAMA İLE YAPILMASI

Prof.Dr.İskender DEMİRKOL danışmanlığında, Şükriye ÇAKIR tarafından hazırlanan bu çalışma 05/09/2019 tarihinde aşağıdaki jüri tarafından Fizik Anabilim Dalı'nda Yüksek Lisans Tezi olarak **oybirliği** ile kabul edilmiştir.

Başka	n: Prof. Dr. İskender DEMİRKOL	İmza:
Üye	: Doç. Dr. Bayram GÜNDÜZ	İmza:
Üye	: Doç. Dr. Kamuran DİLSİZ	İmza:

Yukarıdaki sonuç; Enstitü Yönetim Kurulunun/ tarih ve/ nolu kararı ile onaylanmıştır.

Doç. Dr. Zafer ŞİAR Enstitü Müdürü

ÖNSÖZ

Bu tez çalışmamda beni yönlendiren ve bana yardımcı olan çok değerli hocam Prof. Dr. İskender DEMİRKOL'a teşekkür eder saygılarımı sunarım. Bu tezimi bu yıl içerisinde her ikisini de kaybettiğim canım abim Sait ÇAKIR'a ve canım ablam Fikriye ÇAKIR'a ithaf ediyorum. Ayrıca bir parçası olmaktan gurur duyduğum benden hiçbir desteğini esirgemeyen aileme, özellikle ablam Feyziye ÇAKIR'a, Anneme ve geçirdiğim zor günlerimde hayata tutunmamı sağlayan biricik dostlarım Ayşen BACALAN, Zeynep ÇİFTÇİ ve Hayriye İNAK'a teşekkürü bir borç bilirim.

> Şükriye ÇAKIR Bingöl 2019

İÇİNDEKİLER

ÖNSÖZ	ii
İÇİNDEKİLER	iii
SİMGELER VE KISALTMALAR LİSTESİ	v
ŞEKİLLER LİSTESİ	vi
TABLOLAR LİSTESİ	xii
ÖZET	xviii
ABSTRACT	xix
1. GİRİŞ	1
1.1.Tesir kesiti	2
2. KAYNAK ÖZETLERİ	4
3. MATERYAL VE YÖNTEM	6
3.1. Radyoizotop Üretimi	6
3.2. Hızlandırıcı Kaynaklı Sistem (ADS)	8
3.3. Hızlandırıcıların Tarihçesi	9
3.4. Hızlandırıcıların Gelişimi	9
3.5. Türkiye deki Hızlandırıcılar ve Gelişimi	10
3.6. Hızlandırıcı Çeşitleri	11
3.6.1. Doğru-Voltaj Hızlandırıcılar	12
3.6.2. Lineer (Doğrusal) Hızlandırıcılar	12
3.6.3. Dairesel Hızlandırıcılar	13
3.6.3.1. Siklotronlar	14
3.6.3.2. Mikrotronlar	14
3.6.3.3. Betatronlar	14
3.6.3.4. Sinkrotronlar	15

3.7. Hızlandırıcıların Kullanım Alanları	15
3.8. Spallasyon (Parçalanma)	16
3.8.1. Spallasyon Reaksiyonu	16
3.8.2. Spallasyon Hedef	16
3.8.3. Spallasyon Nötron Hedefi	17
3.9. Yöntem	18
3.10. Nükleer Modeller	18
3.10.1. Denge-Öncesi Modellere Giriş	20
3.10.2. Nükleer Reaksiyonlardaki Denge-Öncesi Modellerin Ortak	
Özellikleri	20
3.10.3. Cascade Exciton Model	21
5. BULGULAR VE TARTIŞMA	23
4.1. Karbon (¹¹ C) Üretimi	23
4.2. İndiyum (¹¹¹ In) Üretimi	40
4.3. Kobalt (⁵⁷ Co) üretimi	59
4.4 Oksijen (¹⁵ O) Üretimi	76
6. SONUÇLAR VE ÖNERİLER	94
KAYNAKLAR	95
ÖZGEÇMİŞ	98

SİMGELER VE KISALTMALAR LİSTESİ

Mb	: Milibarn
GeV	: Gigaelektrovolt
MeV	: Megaelektrovolt
Z	: Atom Numarası
Α	: Kütle Numarası
р	: Proton
n	: Nötron
Ep	: Proton demeti enerjisi
С	: Karbon
0	: Oksijen
In	: İndiyum
Ν	: Azot
PET	: Pozitron Emisyon Tomografi
CEM	: Cascade Excition Modeli
TAC	: Türk Hızlandırıcı Projesi
ADS	: Hızlandırıcı Sürümlü Sistem
NEA	: Nükleer Enerji Ajansı
OECD	: Ekonomik İşbirliği ve Kalkınma Örgütü

ŞEKİLLER LİSTESİ

Şekil 1.1.	Reaksiyon geometrisi	2
Şekil 3.1.	Wideröe lineer hızlandırıcısı	13
Şekil 4.1.	Bor elementinin 20 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin enerji değerleri	24
Şekil 4.2.	Bor elementinin 20 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin oluşum tesir kesitleri	25
Şekil 4.3.	Bor elementinin 20 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri	26
Şekil 4.4.	Bor elementinin 20 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	27
Şekil 4.5.	Bor elementinin 20 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin (Z=1-6) izotop üretim tesir kesiti	
	değerleri	28
Şekil 4.6.	Bor elementinin 30 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin enerji değerleri	29
Şekil 4.7.	Bor elementinin 30 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin oluşum tesir kesitleri	30
Şekil 4.8.	Bor elementinin 30 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri	31
Şekil 4.9.	Bor elementinin 30 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	32

Bor elementinin 30 MeV enerjili protonlarla bombardıman edilmesi	
sonucu oluşan ürün çekirdeklerin (Z=1-6) izotop üretim tesir kesiti	
değerleri	33
Bor elementinin 45 MeV enerjili protonlarla bombardımanı sonucu	
oluşan ürün elementlerin enerji değerleri	34
Bor elementinin 45 MeV enerjili protonlarla bombardımanı sonucu	
oluşan ürün elementlerin oluşum tesir kesitleri	35
Bor elementinin 45 MeV enerjili protonlarla bombardıman edilmesi	
sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri	36
Bor elementinin 45 MeV enerjili protonlarla bombardıman edilmesi	
sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
değerleri	37
Bor elementinin 45 MeV enerjili protonlarla bombardıman edilmesi	
sonucu oluşan ürün çekirdeklerin (Z=1-6) izotop üretim tesir kesiti	
değerleri	38
Çeşitli enerji aralıklarında Karbon-11 izotopunun oluşumu için	
CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji	
Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması	39
Kadmiyum elementinin 20 MeV enerjili protonlarla bombardımanı	
sonucu oluşan ürün elementlerin enerji değerleri	41
Kadmiyum elementinin 20 MeV enerjili protonlarla bombardımanı	
sonucu oluşan ürün elementlerin oluşum tesir kesitleri	42
Kadmiyum elementinin 20 MeV enerjili protonlarla bombardıman	
edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
değerleri	43
Kadmiyum elementinin 20 MeV enerjili protonlarla bombardıman	
edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
değerleri	44
Kadmiyum elementinin 20 MeV enerjili protonlarla bombardıman	
edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,47,48,49) izotop	
üretim tesir kesiti değerleri	45
Kadmiyum elementinin 30 MeV enerjili protonlarla bombardımanı	
sonucu oluşan ürün elementlerin enerji değerleri	46
	Bor elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1-6) izotop üretim tesir kesiti değerleri

Şekil 4.23.	Kadmiyum elementinin 30 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin oluşum tesir kesitleri	47
Şekil 4.24.	Kadmiyum elementinin 30 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	48
Şekil 4.25.	Kadmiyum elementinin 30 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	49
Şekil 4.26.	Kadmiyum elementinin 30 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,47,48,49) izotop	
	üretim tesir kesiti değerleri	50
Şekil 4.27.	Kadmiyum elementinin 45 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin enerji değerleri	51
Şekil 4.28.	Kadmiyum elementinin 45 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin oluşum tesir kesitleri	52
Şekil 4.29.	Kadmiyum elementinin 45 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	53
Şekil 4.30.	Kadmiyum elementinin 45 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	54
Şekil 4.31.	Kadmiyum elementinin 45 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,45,46,47,48,49)	
	izotop üretim tesir kesiti değerleri	56
Şekil 4.32.	Çeşitli enerji aralıklarında İndiyum-111 izotopunun oluşumu için	
	CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji	
	Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması	58
Şekil 4.33.	Demir elementinin 12 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin enerji değerleri	60
Şekil 4.34.	Demir elementinin 12 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin oluşum tesir kesitleri	61

Şekil 4.35. Demir elementinin 12 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji Demir elementinin 12 MeV enerjili protonlarla bombardıman Sekil 4.36. edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti Şekil 4.37. Demir elementinin 12 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,25,26,27) izotop Şekil 4.38. Demir elementinin 20 MeV enerjili protonlarla bombardımanı Şekil 4.39. Demir elementinin 20 MeV enerjili protonlarla bombardımanı Şekil 4.40. Demir elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji Sekil 4.41. Demir elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti Sekil 4.42. Demir elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,25,26,27) izotop üretim tesir kesiti değerleri..... 69 Şekil 4.43. Demir elementinin 29,5 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri..... 70 Sekil 4.44. Demir elementinin 29,5 MeV enerjili protonlarla bombardımanı Şekil 4.45. Demir elementinin 29,5 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji Demir elementinin 29,5 MeV enerjili protonlarla bombardıman Sekil 4.46. edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti

Şekil 4.47.	Demir elementinin 29,5 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,23,24,25,26,27)	
	izotop üretim tesir kesiti değerleri	74
Şekil 4.48.	Çeşitli enerji aralıklarında Kobalt-57 izotopunun oluşumu için	
	CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji	
	Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması	75
Şekil 4.49.	Azot elementinin 20 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin enerji değerleri	77
Şekil 4.50.	Azot elementinin 20 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin oluşum tesir kesitleri	78
Şekil 4.51.	Azot elementinin 20 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	79
Şekil 4.52.	Azot elementinin 20 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	80
Şekil 4.53.	Azot elementinin 20 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin (Z=1,2,4,6,7,8) izotop üretim tesir	
	kesiti değerleri	81
Şekil 4.54.	Azot elementinin 30 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin enerji değerleri	82
Şekil 4.55.	Azot elementinin 30 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin oluşum tesir kesitleri	83
Şekil 4.56.	Azot elementinin 30 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	84
Şekil 4.57.	Azot elementinin 30 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	85
Şekil 4.58.	Azot elementinin 30 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin (Z=1-8) izotop üretim tesir kesiti	
	değerleri	86

Şekil 4.59.	Azot elementinin 45 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin enerji değerleri	87
Şekil 4.60.	Azot elementinin 45 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin tesir kesiti değerleri	88
Şekil 4.61.	Azot elementinin 45 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	89
Şekil 4.62.	Azot elementinin 45 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri	90
Şekil 4.63.	Azot elementinin 45 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin (Z=1-8) izotop üretim tesir kesiti	
	değerleri	92
Şekil 4.64.	Çeşitli enerji aralıklarında Oksijen-15 izotopunun oluşumu için	
	CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji	
	Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması	93

TABLOLAR LİSTESİ

Tablo 3.1.	Nükleer tıpta kullanılan bazı radyoizotoplar ve kullanım alanları	8
Tablo 4.1.	Bor elementinin 20 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin enerji değerleri	24
Tablo 4.2.	Bor elementinin 20 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin oluşum tesir kesitleri	25
Tablo 4.3.	Bor elementinin 20 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	26
Tablo 4.4.	Bor elementinin 20 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	27
Tablo 4.5.	Bor elementinin 20 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin (Z=1-6) izotop üretim tesir kesiti	
	değerleri	28
Tablo 4.6.	Bor elementinin 30 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin enerji değerleri	29
Tablo 4.7.	Bor elementinin 30 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin oluşum tesir kesitleri	30
Tablo 4.8.	Bor elementinin 30 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri	31
Tablo 4.9.	Bor elementinin 30 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	32
Tablo 4.10.	Bor elementinin 30 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin (Z=1-6) izotop üretim tesir kesiti	
	değerleri	33

Tablo 4.11.	Bor elementinin 45 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin enerji değerleri	34
Tablo 4.12.	Bor elementinin 45 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin oluşum tesir kesitleri	35
Tablo 4.13.	Bor elementinin 45 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri	36
Tablo 4.14.	Bor elementinin 45 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	37
Tablo 4.15.	Bor elementinin 45 MeV enerjili protonlarla bombardıman edilmesi	
	sonucu oluşan ürün çekirdeklerin (Z=1-6) izotop üretim tesir kesiti	
	değerleri	38
Tablo 4.16.	Çeşitli enerji aralıklarında Karbon-11 izotopunun oluşumu için	
	CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji	
	Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması	39
Tablo 4.17.	Kadmiyum elementinin 20 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin enerji değerleri	41
Tablo 4.18.	Kadmiyum elementinin 20 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin oluşum tesir kesitleri	42
Tablo 4.19.	Kadmiyum elementinin 20 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	43
Tablo 4.20.	Kadmiyum elementinin 20 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	44
Tablo 4.21.	Kadmiyum elementinin 20 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,47,48,49) izotop	
	üretim tesir kesiti değerleri	45
Tablo 4.22.	Kadmiyum elementinin 30 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin enerji değerleri	46
Tablo 4.23.	Kadmiyum elementinin 30 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin oluşum tesir kesitleri	47

Tablo 4.24.	Kadmiyum elementinin 30 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	48
Tablo 4.25.	Kadmiyum elementinin 30 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	49
Tablo 4.26.	Kadmiyum elementinin 30 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,47,48,49) izotop	
	üretim tesir kesiti değerleri	50
Tablo 4.27.	Kadmiyum elementinin 45 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin enerji değerleri	51
Tablo 4.28.	Kadmiyum elementinin 45 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin oluşum tesir kesitleri	52
Tablo 4.29.	Kadmiyum elementinin 45 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	53
Tablo 4.30.	Kadmiyum elementinin 45 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	54
Tablo 4.31.	Kadmiyum elementinin 45 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,45,46,47,48,49)	
	izotop üretim tesir kesiti değerleri	55
Tablo 4.32.	Çeşitli enerji aralıklarında İndiyum-111 izotopunun oluşumu için	
	CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji	
	Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması	57
Tablo 4.33.	Demir elementinin 12 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin enerji değerleri	60
Tablo 4.34.	Demir elementinin 12 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin oluşum tesir kesitleri	61
Tablo 4.35.	Demir elementinin 12 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	62

Tablo 4.36.	Demir elementinin 12 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	63
Tablo 4.37.	Demir elementinin 12 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,25,26,27) izotop	
	üretim tesir kesiti değerleri	64
Tablo 4.38.	Demir elementinin 20 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin enerji değerleri	65
Tablo 4.39.	Demir elementinin 20 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin oluşum tesir kesitleri	66
Tablo 4.40.	Demir elementinin 20 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	67
Tablo 4.41.	Demir elementinin 20 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	68
Tablo 4.42.	Demir elementinin 20 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,25,26,27) izotop	
	üretim tesir kesiti değerleri	69
Tablo 4.43.	Demir elementinin 29,5 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin enerji değerleri	70
Tablo 4.44.	Demir elementinin 29,5 MeV enerjili protonlarla bombardımanı	
	sonucu oluşan ürün elementlerin oluşum tesir kesitleri	71
Tablo 4.45.	Demir elementinin 29,5 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	72
Tablo 4.46.	Demir elementinin 29,5 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	73
Tablo 4.47.	Demir elementinin 29,5 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,23,24,25,26,27)	
	izotop üretim tesir kesiti değerleri	74

Tablo 4.48.	Çeşitli enerji aralıklarında Kobalt-57 izotopunun oluşumu için	
	CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji	
	Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması	75
Tablo 4.49.	Azot elementinin 20 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin enerji değerleri	77
Tablo 4.50.	Azot elementinin 20 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin oluşum tesir kesitleri	78
Tablo 4.51.	Azot elementinin 20 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	79
Tablo 4.52.	Azot elementinin 20 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	80
Tablo 4.53.	Azot elementinin 20 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,4,6,7,8) izotop	
	üretim tesir kesiti değerleri	81
Tablo 4.54.	Azot elementinin 30 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin enerji değerleri	82
Tablo 4.55.	Azot elementinin 30 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin oluşum tesir kesitleri	83
Tablo 4.56.	Azot elementinin 30 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	84
Tablo 4.57.	Azot elementinin 30 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti	
	değerleri	85
Tablo 4.58.	Azot elementinin 30 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin (Z=1-8) izotop üretim	
	tesir kesiti değerleri	86
Tablo 4.59.	Azot elementinin 45 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin enerji değerleri	87
Tablo 4.60.	Azot elementinin 45 MeV enerjili protonlarla bombardımanı sonucu	
	oluşan ürün elementlerin tesir kesiti değerleri	88

Tablo 4.61.	Azot elementinin 45 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji	
	değerleri	89
Tablo 4.62.	Azot elementinin 45 MeV enerjili protonlarla bombardıman	
	edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir	
	kesiti değerleri	90
Tablo 4.63.	Azot elementinin 45 MeV enerjili protonlarla bombardıman	

- Tablo 4.64. Çeşitli enerji aralıklarında Oksijen-15 izotopunun oluşumu için
 CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji
 Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması...... 93

ENERJİSİ10-50 MeV ARALIĞINDA OLAN PROTON DEMETİ İLE SEÇİLEN HEDEF ELEMENTLERİN BOMBARDIMANI SONUCU OLUŞAN İZOTOPLARIN TESPİTİNİN TEORİK HESAPLAMA İLE YAPILMASI

ÖZET

Çekirdek fiziği açısından atom çekirdeğinin daha detaylı bir şekilde incelenebilmesi için nükleer reaksiyon sonucunda elde edilen deneysel veriler oldukça önemlidir. Fakat zaman ve maliyet açısından bütün atomların deneysel olarak incelenmesi mümkün olmamaktadır. Nükleer reaksiyonların enerji bağımlılığı çok detaylı olarak bilinmediğinden farklı enerji aralıkları için tesir kesitlerinin ve spektral yayınlanma durumlarının incelenmesi gerekmektedir. Bu tesir kesitlerinin teorik olarak hesaplanabilmesi büyük bir önem taşımaktadır.

Bu çalışmada Bor (¹¹B), Kadmiyum (¹¹²Cd), Demir (⁵⁸Fe) ve Azot (¹⁵N) elementlerinin hızlandırılmış protonla bombardımanı sonucu elde edilen (¹¹C), İndiyum (¹¹¹In) Kobalt (⁵⁷Co), Oksijen (¹⁵O) radyoizotopların spektrumları ve tesir kesitleri CEM03 paket programı ile hesaplanmıştır ve Nükleer Enerji Ajansı'ndan (NEA) temin edilen deneysel veriler ile karşılaştırılmıştır.

Bu çalışmadan elde edilen sonuçlar ile ülkemizde radyoizotop elementlerin üretim programları için gerekli olan veri tabanının güçlendirilmesi, üretim tabanının geliştirilmesi ve yapılacak deneysel çalışmalara katkı sağlaması amaçlanmaktadır.

Anahtar Kelimeler: Tesir kesiti, CEM03, radyoizotop, enerji, spallasyon, nükleer reaksiyon, hızlandırıcı çeşitleri.

THE THEORETICAL CALCULATION OF ISOTOPIC WHICH HAS BEEN OCCURED AS A RESULT OF A TARGET ELEMENT BY MEANS OF PROTON WHICH HAS AN ENERGY BETWEN 10 AND 50 MEV

ABSTRACT

In order to investigate the atomic nucleus in more detail, the experimental data obtained as a result of nuclear reaction is very important. However, it is not possible to investigate all atoms experimentally because of the cost and limited time. Since the energy dependence of nuclear reactions is not known in detail, it is necessary to examine the cross-sections and spectral emission states for different energy ranges. Theoretical calculations of these cross-sections are very important.

In this study, spectra and effect cross-sections of indium cobalt (⁵⁷Co), oxygen (¹⁵O) radioisotopes obtained from accelerated proton bombardment of Boron (¹¹B), Cadmium (¹¹²Cd), Iron (⁵⁸Fe) and Nitrogen (¹⁵N) were calculated with CEM03 package program and the results were compared with experimental data taken from the Nuclear Energy Agency (NEA).

With the results obtained from this study, strengthening the database required for the production programs of radioisotope elements, development of production base and contributing to experimental studies are aimed.

Keywords: Expressive section, CEM03, radioisotope, energy, spallation, nuclear reactions, accelerator types.

1. GİRİŞ

Çekirdek fiziğinin anlaşılabilmesi bakımından nükleer reaksiyon çalışmalarından elde edilecek olan deneysel veriler önemlidir. Nükleer reaksiyonların enerjiye olan bağımlılığı daha detaylı olarak bilinmediğinden çok sayıdaki enerjiler için tesir kesitlerinin ve spektral yayınlanma şekillerinin incelenmesi gerekmektedir. Bu tesir kesitlerinin teorik olarak daha evvelden hesaplanması büyük bir önem taşımaktadır. Ayrıca; hızlandırıcılarla gönderilen bir parçacık demeti (çoğu tasarımlarda proton gönderilir) hedef olarak seçilmiş olan elemente çarptığı zaman hedef içindeki atomik çekirdeğin spallasyonu ile fazla miktarda nötron, yüklü parçacıklar ve ürün çekirdekler elde edilir. Yüksek enerjiye sahip bir parçacık, çekirdekle etkileştikten sonra, hedeften bazı nükleonlar ya da hafif çekirdeklerin çıkmasına sebep olur. Bu esasa dayanarak yüksek enerjiye sahip proton hedef çekirdeğe çarptırılır (intranuclear cascade). Böylece hedef çekirdekten yüksek enerjili nükleonlar çıkarak çevresindeki çekirdeklerle etkileşir (internuclear cascade). Bu iki süreç içerisinde hedef çekirdeğin belirli bir kısmı ya parçalanma ya da buharlaşma suretiyle dışarı fazla olan nükleonları atarak yeni ürün çekirdekler ve izotopları oluşur.

Nötronlarla oluşturulan bu reaksiyon tesir kesitleri fisyon ve füzyon enerji reaktörlerinin tasarımında önemli bir yer tutmaktadır. Bu tür reaksiyonların oluşturulması sırasında kullanılan materyallerin yapısal dayanıklılığını etkileyebilecek değişimler oluşabilmektedir. Bu tür sorunların öneminin anlaşılabilmesi ve oluşan problemin giderilebilmesi için tesir kesitlerinin ve yayınlanma spektrumlarının deneysel olarak ölçülmesi ve daha önceden oluşabilecek durumların belirlenebilmesi için de teorik hesaplamaların yapılabilmesi gerekmektedir.

Bu çalışmada; bazı elementlerin hızlandırılmış proton demetiyle bombardıman edilmesi sonucunda yayınlanan parçacıkların spektrumları ve tesir kesitleri incelenecektir. Böylelikle bu çalışmanın ülkemizde kullanıma açılan hızlandırıcı için yapılacak olan çalışmalara, nükleer reaksiyon modellerine dayanan tesir kesiti hesaplamalarına, radyoizotop elementlerin üretim programları için gerekli veri tabanın güçlendirilmesine, üretim teknolojisinin geliştirilmesine ve yapılacak deneysel çalışmalara ışık tutması amaçlanmaktadır.

1.1. Tesir Kesiti

Tesir kesiti, diğer adıyla uyarılma fonksiyonu olarak da bilinir. Bir nükleer çarpışmanın farklı son durumlarından her biri; kendine özgü olma olasılığına veya tesir kesitine sahiptir. Uyarılma fonksiyonu olarak da bilinen tesir kesiti nükleer reaksiyonun oluşma olasılığının bir ölçütüdür. Yani mermi parçacık ile hedef çekirdek etkileşiminde ortaya çıkan sonuca bakarak çekirdek reaksiyonun oluşturulma olasılığı bize o reaksiyonun tesir kesitini verir. Tesir kesitinin birimi barn olarak bilinmektedir.1 barn=10⁻²⁴ cm² ye eşittir. Nükleer reaksiyon tesir kesiti hesaplamasının yapılabilmesi için; ince bir parça materyal içerisinden geçen yüksek enerjiye sahip parçacıklar ince bir elektron bulutu içerisinden geçecektir fakat bu parçacıklar eğer ağır bir çekirdeğe çarparsa ya durdurulacak ya da saptırılacaktır (Krane 2002). Yani bir parçacık bu alan ile karşılaşınca aralarında bir etkileşme olduğunda bir tesir kesitine sahip olacaktır. Eğer birim hacimde n tane hedef çekirdek, A alan yüzeyine ve dt kalınlığına sahip ince bir levha var ise bu levhadaki hedef parçacıkların toplam etkin alanı şekil 1.1 deki gibi olur:

ndt: birim yüzey alanına düşen çekirdek sayısıdır.

Andt: A alanındaki toplam çekirdek sayısıdır.

 σ : hedefteki her bir çekirdeğin alanı olarak ifade edilecek olursa;

Şekil 1.1. Reaksiyon geometrisi (Yılmaz 1998)

Nükleer reaksiyon için mümkün olan toplam etkin alan ise; An σ dt = toplam etkin alan olur.

Hedef çekirdeklerin mermi parçacığıyla yapacakları ara etkileşmeler hesaplanacak olursa, çarpışma ve yutulma etkileşimi için σ ifadesi σ_s ve σ_a olarak ifade edilirse birbirinden bağımsız olayların olasılıkları çekirdeğin toplam tesir kesitini yani σ_t yi verir.

 $\sigma_t = \sigma_s + \sigma_a$ olur.

Saçılmalar, elastik ve inelastik saçılmalarını kapsar. Yutulma reaksiyonu (capture) ve parçalanma reaksiyonu da σ_s ve σ_a yı kapsar. Dolayısıyla formül şu şekilde yazılabilir;

 $\sigma_s = \sigma_{elastik} + \sigma_{inelastik}$ $\sigma_a = \sigma_c + \sigma_p$ (Y1lmaz 1998)

2. KAYNAK ÖZETLERİ

Demirkol (2003), Gazi Üniversitesinde "Enerji Yükselteci Tasarımında Proton-Ağır Element Çarpışmasında Nötron Üretimi" konulu bir doktora tezi hazırlamıştır. Bu çalışmasında teorik ve deneysel veri karşılaştırması yapmıştır.

Demirkol (2003), Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisinde yayınlanan "Pb(1 GeV)+p Reaksiyonunda Üretilen Atık Çekirdeklerin İzotopik Üretim Tesir Kesitleri" konulu makalesinde teorik olarak hesaplama yapmış ve deneysel verilerlede karşılaştırmasını yapmıştır.

Demirkol (2005), 3-4 Haziran tarihlerinde Kayseri'de düzenlenen, 'Yeni ve Yenilenebilir Enerji Kaynakları Enerji Yönetimi' adlı sempozyumda, "p+ ²³²Th Çarpışmasında Spallasyon Nötron Üretimi ve Enerjileri" konulu bildiride bulunmuştur. p + ²³²Th çarpışması sonucu ortaya çıkan nötron sayıları ve enerjilerinin teorik olarak hesaplamasını yapmıştır.

Tel vd (2005), "²³²Th ve ²³⁸U Çekirdeklerinin Nötron Bombardımanından Yayınlanan Nötronların Kinetik Enerji Dağılımı" konulu çalışmalarında teorik hesaplamalar yapmışlardır.

Yavaş (2004), parçacık hızlandırıcılarıyla ilgili çalışmalar yapmış, 7-9 Haziran 2004 tarihinde Ankara'da düzenlenen II. Ulusal Parçacık Hızlandırıcıları ve Uygulama Kongresinde "Parçacık Hızlandırıcıları" konulu bir bildiri yayınlamıştır.

Sultansoy (2001), 25-26 Ekim 2001 tarihinde Ankara'da düzenlenen I. Ulusal Parçacık Hızlandırıcıları ve Uygulamaları Kongresinde "Parçacık Hızlandırıcıları: Dün, Bugün, Yarını" konulu bildiri yayınlamıştır. Karadeniz vd (2001), 25-26 Ekim 2001 tarihinde I. Ulusal Parçacık hızlandırıcıları ve Uygulamaları kongresinde, "Hızlandırıcı Güdümlü Reaktörler / Enerji Yükseltici" adlı ortak bir bildiri yayınlamışlardır.

Kamitsubo vd (1967), ₇₄W¹⁸³ elementinin 50 MeV enerjili proton demetiyle bombardıman edilmesi sonucu ortaya çıkan nötronların açısal dağılımını deneysel olarak yapmışlardır.

Harder vd (1987), ₈₂Pb²⁰⁷ elementinin 25 MeV enerjili proton demetiyle bombardıman edilmesi sonucunda ortaya çıkan nötronların enerji spektrumlarının deneysel olarak çalışmalarını yapmışlardır.

Vaishnene vd (2010), ₈₂Pb²⁰⁸ elementinin farklı enerjilere sahip proton demetleriyle bombardıman edilmesi sonucu oluşan nötronların fisyon tesir kesitlerini deneysel olarak çalışmalarını yapmışlardır.

3. MATERYAL VE YÖNTEM

3.1. Radyoizotop Üretimi

Proton sayıları aynı olan, nötron sayıları ise farklı olan çekirdeklere izotop denilmektedir. Bazı izotoplar kararlı yapıda çekirdeğe, bazıları ise kararsız yapıda çekirdeğe sahiptirler. Kararsız çekirdeğe sahip izotoplar kararlı hale geçebilmek için kendiliğinden radyoaktif bozunum yaparak, özgün bir gama ısını ya da atom altı parçacık yayınlarlar. Bu kararsız yapıdaki izotoplara radyoaktif izotop veya radyoizotop denilir. Bu bozunum sonucunda oluşan ürün yine kararsız olabilir. Bu durumda ikinci bir bozunum gözlemlenebilir. Söz konusu durum atomun tümüyle kararlı bir yapıya gelmesine kadar devam eder. Bu işleme bozunum zinciri denir.

Radyoizotoplar doğada doğal halde bulunuyorsa veya doğadaki izotopların bozunmasından oluşuyorsa buna doğal radyoizotop, yapay olarak üretiliyorsa buna da yapay izotop denilir. Doğal radyoaktivite ilk olarak Becquerel'in 1896 yılında potasyum uranil sülfat üzerinde yaptığı bir araştırma sırasında keşfedilmiştir. O'nun devamında ise Pierre ve Marie Curie, E. Rutherford ve F. Soddy doğadaki pek çok radyoaktif atomun bulunmasına katkıda bulunmuşlardır. Adı geçen bilim adamlarının çalışmaları bizlere, tabiatta atom numaraları 83 ten büyük olan tüm elementlerin radyoaktif özelliğe sahip olduğu sonucunu göstermiştir. İlk olarak I. Curie ve F. Joliot tarafından 1934 yılında ise yapay radyoaktivite kavramı ortaya atılmıştır.

Siklotron tipi hızlandırıcıların keşfi ise çok değişik yapay radyoizotopların üretilmesini kolaylaştırmıştır. Radyoizotoplar daha çok siklotron tipi hızlandırıcılar ve reaktörlerde üretilmektedir. Radyoizotopların üretiminde hangi yöntemin kullanılacağı ise üretimde kullanılan parçacıkların enerjisi ve hedef çekirdek belirlemektedir. Nükleer tıpta kullanılan radyoizotopların neredeyse hepsi yapaydır.

Radyoizotoplar 3 farklı yolla elde edilmektedir. Bunlar Nükleer reaktörler, siklotronlar (hızlandırıcılar) ve radyoizotop jeneratörleridir. Radyoizotop üretimindeki en önemli kıstas ise zamandır. Kısa yarı ömürlü olan izotoplar kullanılacakları yerlere zamanında ulaştırılamayabilirler, bu nedenle üretim noktasından uzakta bir yerde bulunan ve özellikle kısa yarı ömürlü radyoizotop ihtiyacı olan tesislerin taleplerini karşılayabilmek amacıyla radyoizotop jeneratörleri kullanılmaktadır.

¹¹C, ¹³N, ¹⁸F elementler gibi pozitron yayan ve siklotronda üretilen radyoizotoplar, birinci grup yapay radyoizotoplar olarak adlandırılır ve kabul edilirler. Bu gruptaki radyoizotopların yarılanma ömürleri oldukça kısa olduğundan üretim yerleri ile kullanım yerlerinin bir arada olması gerekmektedir. İkinci grup radyoizotoplar ise yine siklotronda üretilen ve birinci gruba göre daha uzun yarı ömürlü radyoizotoplardır. ⁵⁷Co, ⁶⁷Ga, ¹¹¹In, ¹²³I ve ²⁰¹Tl gibi elementler bu gruba girmektedir. Yarılanma ömürleri yeterince uzun olduğundan, üretildikleri yerlerden uzakta kullanılabilirler. Jeneratör ürünleri olan ⁶⁸Ga, ^{81m}Kr, ⁸²Ru, ^{99m}Tc ve ^{113m}In gibi izotoplar üçüncü grup radyoizotoplar olarak kabul görmektedir. Bunlar arasından 99mTc ideal bir radyoizotop olup, nükleer tıp uvgulamalarının %90'ından fazlasında kullanılır. Dördüncü grup olanlar ise nükleer reaktörler ile üretilen ²³⁵U'in fissyon ürünü olan ¹³³X, ⁹⁹Mo ve ¹³¹I gibi radyoizotoplardır. Günümüzde siklotronlar, reaktörler, nötron jeneratörleri ve lineer hızlandırıcılar kullanılarak üretilen 2700'den fazla yapay radyoizotopun var olduğu bilinmektedir. OECD Nükleer Enerji Ajansı tarafından hazırlanan "Beneficial Uses and Production of Isotopes" raporunda, reaktörler ve hızlandırıcılarda elde edilen radyoizotopların kullanıldığı, yılda 30 milyondan daha fazla işlemin gerçekleştirildiği belirtilmektedir. Dünyadaki radyoizotop talebi özellikle tıp dünyasındaki ilerlemeler ve yeni uygulamalar ile sürekli artmaktadır. Radyoizotoplar oldukça pahalı oldukları için üretim tesislerinin sayısı çok sınırlı olup, üretimleri için özel cihazlar ve donanımlar gerekmektedir (YÜKSEL 2008).

Tablo 3.1. Nükleer tıpta kullanılan bazı radyoizotoplar ve kullanım alanları

İZOTOP	OLUŞMA	KULLANIM ALANLARI
	REAKSİYONU/YARI	
	ÖMRÜ	
¹¹ C	$^{14}N(p,\alpha)$ $^{11}C/20,39$ dakika	Beyinin olağan ve olağan dışı faaliyetlerinin
		izlenmesinde kullanılır
^{13}N	$^{13}C(p,n)$ $^{13}N/$ 9,96 dakika	Çok kısa ömürlü PET olarak beyin fizyoloji ve
	$^{16}O(p,\alpha)^{13}N$	patolojisinde, ayrıca nörofarmolojik, psikiyatri, akıl
15	15 15	hastalıkları ile ilgili çalışmalarda kullanılır
150	$^{15}N(p,n)$ $^{15}O/$ 122,24	Pet görüntülemede kullanılır
19-	saniye	
¹⁰ F	¹ °O(p,n) ¹ °F/ 109,77 saniye	Beyin üzerine yapılan araştırmalarda radyo izleyici ve PET görüntülemede kullanılır
⁵⁷ Co	⁵⁸ Fe(p,2n) ⁵⁷ Co/ 271,29	Nükleer tıpta radyoizotop doz kalibratörlerinde, gama
	gün	kameralar ve ölçüm sistemlerinde kaynak olarak,
		kalite kontrol detektörü ve gama ısını detektörlerinin
67 m	(0	kalibrasyonunda kullanılmaktadır
⁵⁷ Ga	⁶⁸ Zn(p,2n) ⁵⁷ Ga/ 3,26 gün	Abdonominal enfeksiyonların tespiti,
		Hodgkins/non-hodgkins lent kanseri (lentoma)
		tespiti, ¹¹ In ile birlikte kullanildiginda yumuşak doku
		Akciğerlerdeki partikül etkili hastalıkların tespiti:
		vumusak doku bas boyun akciğer karaciğer
		tümörleri melanom ve nöroblastom da galvum
		tutulusu gösteren tümörlerde kullanılır
¹⁰³ Pd	¹⁰³ Rh(p,n) ¹⁰³ Pd/ 16,99gün	Prostat kanseri tedavisinde (brakiterapi) kullanılır
¹²³ I	124 Xe(p,2n) 123 Cs \rightarrow 123 I	Beyin, tiroid, böbrek ve myokardial görüntüleme,
	/ 13,27 saat	beyindeki kan akısının
		görüntülenmesi ile bazı nörolojik hastalıkların
201-	202777	teşhisinde (Alzheimir vb.)
²⁰¹ Tl	$^{203}\text{Tl}(p,3n)^{201}\text{Pb} \rightarrow ^{201}\text{Tl}$	Klinik kardiyoloji, SPECT görüntüleme, myokardial
	/ 72,912 saat	perfüzyon ve hücre desimetresi Karaciğer, kalp ve
		kas dokusunda normal fizyolojik tutulumu nedeniyle
		bu dokulara yakın yerleşimli lezyonların tespitinin
		yapımında kullanılır.

3.2. Hızlandırıcı Kaynaklı Sistem (ADS)

Elektron (e⁻), pozitron (e⁺), proton (p), anti-proton gibi yüklü parçacık demetlerinin belirli bir amaç kapsamında belirlenen bir enerjiye ulaşıncaya dek hızlandırılmasını sağlayan aletlere hızlandırıcı denir. Bu yüklü parçacıkları istenilen yüksek enerjilere çıkarabilmek için hızlandırıcılar kullanılır. İhtiyaç duyulan hızlandırılmış parçacığı tabii yollardan ya da laboratuvarlarda elde etmenin imkânı olmadığı zamanlarda hızlandırıcılara gerek duyulmaktadır. Hızlandırılan bu parçacıklar aracılığıyla başta Temel Parçacık Fiziği ve Nükleer Fizik olmak üzere bu alanda araştırmalar yapılmaktadır (Yavaş 2004).

3.3. Hızlandırıcıların Tarihçesi

İlk parçacık hızlandırıcıları 1930'larda kurulmasına rağmen, 1950'lere kadar temel parçacıklarla ilgili önemli keşifler kozmik ışın deneyleriyle yapılmıştır(örneğin müonun ve acayip parçacıkların bulunması). Bunun başlıca sebebi, o zamanki hızlandırıcılar aracılığıyla ulaşılabilen enerjilerin düşük seviyede olması idi. Gelişen teknolojiyle birlikte bu enerjilerin yükseltilmesi her on yılda yaklaşık on katına çıkarılmıştır ve özellikle çarpıştırıcıların kurulmasıyla hızlandırıcılar maddenin yapıtaşlarını, onların özelliklerini ve etkileşimlerini inceleyen en önemli aletler haline gelmiştir (Sultansoy 2001).

3.4. Hızlandırıcıların Gelişimi

20.yy başlarında Rutherford deneyi ile ortaya çıkan doğru ve yeni atom modeli sonrasında bilim insanlarının maddenin temel yapısını çözümleme isteğiyle yapmış olduğu arayış ve göstermiş oldukları gayret çerçevesinde özellikle yüksek enerji fiziği (parçacık fiziği) ve nükleer fizik alanlarında yapacağı yeni deneylerde hızlandırılmış elektron ve proton demetlerinin kullanılması gündeme gelmiştir. Katod ışınları tüpleri, katod-anod arasında elektron akımı oluşturan ilk hızlandırıcı çeşidi olarak anılabilir.

Parçacık hızlandırıcıları günümüz dünyasında başta parçacık fiziği ve nükleer fizik deneyleri olmak üzere malzeme fiziği, yüzey fiziği, x-ışınları, nötron terapisi, proton terapisi iyon implantasyonu, petrol ve gaz yataklarının aranması çevre atıkları, gıdaların korunumu izotop üretimi, nükleer atıkların temizlenmesi, toryuma dayalı nükleer santraller, polimerizasyon, litografi, anjiyografi, baca gazlarının temizlenmesi, mikrospektroskopi, güç mühendisliği, sinkrotron ışınımı,serbest elektron lazerleri, ağır iyon füzyonları, plazma ısıtılması gibi 300 ün üzerinde kullanım alanı vardır. Bugün çok pahalıya mal olan radyoizotop üretimi veya 15 yıl paslanmazlık garantisi bulunan bir metalik yüzeyi işlemek, hızlandırıcılara dayalı basit teknolojiler haline gelmiştir.

Sadece sinkrotron ışınımının Avrupadaki kullanımı ele alınırsa, çalışır durumda bulunan ve halka tipli elektron hızlandırıcılarına dayalı HASYLAB (Hamburg), BESSY(Berlin), ESRF (Granoble), ELETTRA (Trieste) vb. sinkrotron ışınımı laboratuvarlarında fiziksel, biyolojik, kimyasal ve jeolojik numuneler üzerinde yapılan ve genel olarak spektroskopiye dayalı araştırmaların yıllık sayısının binlere dayanması mikro teknolojilerin gelişim hızı konusunda bizlere bazı ipuçları vermektedir. Günümüzde dünyada 4 kıtaya dağılmış 15000 civarında irili ufaklı parçacık hızlandırıcısı mevcuttur. Daha önce bazılarının isimleri ve bulundukları ülkeler verilen ve daha çok parçacık fiziği, nükleer fizik deneyleri, sinkrotron ışınımı üretimi ve yeni teknoloji geliştirme amacıyla kurulan büyük ölçekli olan hızlandırıcıların sayısı ise 115 civarındadır. Ziyaretçi olarak katılan araştırmacılar ile birlikte CERN de çalışan araştırmacı sayısı 4500, DESY'de çalışan araştırmacı sayısı ise 3000 civarındadır (TAEK 2007).

3.5. Türkiye deki Hızlandırıcılar ve Gelişimi

Türkiye parçacık hızlandırıcıları alanında çok geri kalmıştır ve bizler gelişmiş ülkelerle aramızda oluşan açığı kapatmak zorundayız. Mevcut durumun sebeplerini belirlemek çok önemli olsa da, atılması gereken adımları belirlemek bundan çok daha fazla önemlidir (Sultansoy 2001).Bu bağlamda Ankara Üniversitesi Fizik ve Fizik Mühendisliği Bölümlerinde 1994 tarihiyle başlatılan Hızlandırıcı Fiziği çalışmalarının bir sonucu olarak hazırlanan "Parçacık Hızlandırıcıları: Türkiye'de Neler Yapılmalı?" konulu proje Devlet Planlama Teşkilatı (DPT) desteği ile 1997-2000 yılları arasında yürütülmüş ve tamamlanmıştır. Aynı zamanda bir fizibilite çalışması özelliği taşıyan proje sonucunda "Türk Hızlandırıcı Merkezi (THM)" nin kurulması önerilmiş ve sonuç raporunda THM'de yer alması planlanan tesisler ve kurumsallaşabilmek için atılması gereken adımlar tanımlanmıştır (TAEK 2013).

2002-2005 yılları arasında Ankara Üniversitesi ve Gazi Üniversitesi işbirliği ile yürütülen iki ayrı proje ile Türk Hızlandırıcı Merkezi'nde yapılması planlanan tesislerin temel değişkenlerini ve araştırma potansiyellerini tanımlayan Genel Tasarım çalışmaları tamamlanmış ve bir rapor hazırlanmıştır (TAEK 2013).

Türk Hızlandırıcı Merkezi'nin Teknik Tasarım Raporunu (TTR) yazmak ve ülkemizin Ar-Ge amaçlı ilk parçacık hızlandırıcı tesisini (TARLA) ve ilk Hızlandırıcı Teknolojileri Enstitüsü'nü (HTE) kurmak amacıyla Yaygınlaştırılmış Ulusal ve Uluslararası Proje (YUUP) DPT desteği ile 2006 yılında yürürlüğe girmiştir. Ankara Üniversitesi koordinatörlüğünde proje ortağı olan 12 Üniversiteden (Ankara, Gazi, İstanbul, Boğaziçi, Doğuş, Uludağ, Dumlupınar, GYTE, Erciyes, Osmangazi, S. Demirel ve Niğde Üniversiteleri) ve araştırmacı desteği sağlayan 15 üniversiteden (ODTÜ, Bilkent, Hacettepe, Kırıkkale, Gaziosmanpaşa, Adıyaman, Çankırı Karatekin, Celal Bayar, Aksaray, İnönü, Fatih, Ağrı İ. Çeçen, Bitlis ve Muş Alparslan Üniversiteleri) yaklaşık olarak 168 araştırmacının katılmasıyla sürdürülen proje çalışmalarının bu aşaması 2014 yılı sonunda tamamlanmıştır (TAEK 2013).

Türk Hızlandırıcı Merkezi (THM) nin kurulumunun, ortaya konulacak öncelikler doğrultusunda ve Ulusal Araştırma Merkezi yapısı ile 2015-2025 yılları arasında tamamlanması öngörülmektedir (TAEK 2013).

Türkiye Atom Enerjisi Kurumu- Proton Hızlandırıcı Tesisi (TAEK-PHT); kanser, nörolojik hastalıklar, beyin fizyolojisi ve patolojisi ile koroner arter hastalığı gibi pek çok hastalıkta teşhis amacıyla kullanılan İyot-123, Flor-18 (FDG), İndiyum-111, Galyum-67, Talyum-201 ve bu radyoizotoplardan radyofarmasotiklerin elde edilmesi, radyofarmasotiklerin kalite kontrolü ve hasta dozu olarak dağıtımı ayrıca nükleer alanda araştırma ve eğitim faaliyetlerinde bulunmak amacıyla kurulmaktadır (TAEK 2013).

Proton hızlandırıcısı teknik olarak; TAEK-PHT'deki siklotron tipi hızlandırıcı sistemi (CYCLONE-30) türünün en yeni teknolojik özelliklerine sahiptir. Hızlandırıcının sağlayacağı proton demeti enerjisi değişkendir ve sahip olunan en yüksek proton demeti enerjisi 30 MeV'dir. Hedef sistemleri üzerine gönderilecek olan toplam proton demet akımı da değişken olup, en yüksek akım değeri 1200 µA'dir IBA tarafından tasarlanan bu hızlandırıcı bu seviyedeki bir proton demeti akımı özelliğine sahip dünyadaki ilk ticari hızlandırıcı olma özelliğine sahiptir. Hızlandırıcı sistemi dört adet ışınlama odasına açılan dört ana demet hattı ile bağlantılıdır. Bu demet hatlarından üçünde radyoizotop üretimi yapılıp, birinde ise araştırma faaliyetleri yürütülmektedir (TAEK 2013).

3.6. Hızlandırıcı Çeşitleri

3.6.1. Doğru-Voltaj Hızlandırıcılar

Elektrotları arasında, yüksek voltaj jeneratörü ile üretilen sabit bir elektrik alan bulunmaktadır. Elektrotlardan birinde parçacık kaynağı da vardır. Elektron demetleri için bu bir termo-iyonik katottur. Bu hızlandırıcı sisteminde; başka bir DC ya da yüksek frekans kaynağı kullanılarak seyreltik gazların iyonlaştırılması sonucu elde edilen protonlar, hafif ve ağır iyonlar da hızlandırılabilmektedir. Bu şekilde elde ettiğimiz parçacıklar elektrik alanla hızlandırılır. Parçacıklar hızlandırılırken çarpışmalar sonucu var olan enerjilerinin azalmaması ve ikincil parçacıklar oluşmaması için hızlandırıma bölgesi vakumlanır. Parçacık bu şekilde ikinci elektroda varıncaya kadar enerji kaybetmeden hızlanır. İkinci elektrotu genelde parçacığın sabit hızla hareket ettiği yani elektrik alanın olmadığı bir bölge takip eder. Parçacığın bu şekilde hızlandırılmasıyla elde edilen enerji, uygulanan voltaj değeriyle sınırlıdır. Elektrostatik hızlandırıcılarda ulaşılabilecek maksimum enerji doğrudan elde edilebilecek maksimum voltajla orantılıdır.

3.6.2. Lineer (Doğrusal) Hızlandırıcılar

Doğrusal hızlandırıcılar, parçacık demetinin hareket doğrultusu boyunca sıralanmış bir dizi RF (radyo frekans) kaynağına bağlı sürüklenme tüplerinden oluşmaktadırlar. Radyo frekansı kullanım prensibiyle çalışan lineer hızlandırıcılarda iyonların küçük potansiyel farkları kullanılarak tekrar hızlandırılması gerekliliği problemi yoktur. RF kaynağı yüksek frekanslı Alternatif voltajdır. Doğrusal hızlandırıcıda tüp içerisine iyonlar enjekte edilmektedir. Elektrotların her iki tarafına uygulanan alternatif voltaj uygun olacak şekilde belli aralıklarla sıralanmış elektrotların fazları değiştirilerek hareketlenen iyonların hızlanmaları sağlanmaktadır.

1925'te kullanılan doğru voltaj yerine, değişken voltaj yani değişken elektrik alanın kullanılması fikri ortaya atıldı. 3 yıl sonra Wideröe, bu prensip çerçevesinde o ana kadar olumlu sonuçlanan ilk lineer hızlandırıcı testini gerçekleştirdi. Doğrusal hızlandırıcı, demetin hareket doğrultusu boyunca sıralanmış bir dizi sürüklenme (drift) tüplerden

oluşmaktadır. Bu tüpler bir RF (radyo frekans) kaynağına bağlıdır. RF kaynağı yüksek frekansta alternatif voltaj elde edilmesini sağlamaktadır. İlk yarım periyotta birinci drift tüpe uygulanan voltaj-iyon kaynağını terk eden parçacığı hızlandırır.

Drift tüpler, Faraday kafesi gibidir ve parçacıkları dış alanlara karşı set ederler. Bu arada, RF alanının yönelimi (aşağı veya yukarı) parçacık herhangi bir etki hissetmeksizin terslenir (Şekil 3.1).

Şekil 3.1. Wideröe lineer hızlandırıcısı (Yaşar, 2010)

3.6.3. Dairesel Hızlandırıcılar

Kapalı bir yörüngeden parçacıklar geçirilerek hızlandırılan ve içerisindeki magnetler aracılığıyla parçacıkları dairesel yörüngelerde tutan hızlandırıcı çeşitidir. Dairesel hızlandırıcı içerisindeki parçacıklar, hızlandırıcıyı periyodik olarak dolanır ve her seferinde enerji alarak yörünge çapını artırarak dairesel bir yol izler (Yavaş, 2005; Ulu, 2008).

Dairesel hızlandırıcılarda (lineer hızlandırıcılarda da olduğu gibi) parçacıklar sabit hedef deneyi ya da demet çarpıştırıcı deneyi kullanılarak çarpıştırılırlar. Ancak parçacıklar istenilen enerji düzeyine kadar hızlandırıldıktan sonra manyetik alan değişimi kullanılarak istenilen yöne fırlatılıp sistem dışında çarpışma gerçekleştirilir. Çarpışmanın sonrasında meydana gelen parçacıkların kimliklerinin belirlenmesi, dairesel hızlandırıcılar sayesinde gerçekleşmiş olur.

Dairesel Hızlandırıcılar; Siklotron, Mikrotron, Betatron ve Sinkrotron olmak üzere dört çeşittirler.

3.6.3.1. Siklotronlar

Bu hızlandırıcı protonlar ya da ağır iyonlar gibi relativistik olmayan parçacıkları dairesel magnetler içinde hızlandıran dairesel bir hızlandırıcı çeşitidir. Siklotronda, düzgün manyetik alan ve radyo frekans (RF) kavite (boşluk) kullanır. Siklotrondaki bu hızlandırma kaviteleri D şeklinde iki yarım dairesel odacıklara ayrılmış magnetlerden meydana gelir. Bu magnetler arasında boşluk bulunur. Bu boşlukta bir iyon kaynağı vardır. Hızlandırma olaayı magnetlerin içinde gerçekleşir. Boşluktan geçip diğer magnete ulaşan parçacık değişken olan manyetik alan sayesinde dairesel yörüngede kalır.

3.6.3.2. Mikrotronlar

Mikrotronlar tıpta genellikle tedavi amaçlı kullanılan hızlandırıcıdır. Elektronlar için kullanılan lineer hızlandırıcı ile siklotron karışımı bir cihazdır. Mikrotronlar yapı bakımından basit ve enerji seçimi kolay olan cihazlardır. Diğer lineer hızlandırıcılara göre daha küçük hacimli aygıtlardır. Mikrotronlarda tek kavite yani boşluk bulunur. Elektronlar, mikrotronlarda bir kaynaktan çıkarak bu kavite içerisine gelirler ve burada elektrik alan yardımıyla hızlandırılırlar. Bir müddet sonra bu boşluktan uzaklaşırlar. Daha sonra manyetik alanın içinde bulunan elektronlar, tekrar kaviteye yönlendirilen dairesel bir hareket yaparlar. Elektron kavite içinden her geçişinde hem enerjisi hem de yarıçapı artar.

3.6.3.3. Betatronlar

Yeterli olarak hızlandırılamayan elektron gibi hafif parçacıkları hızlandırmak için kurulan düzeneklerdir. Etrafının manyetik alanla çevrili olmasından dolayı betatronlar içerisinde özel bir bölgenin düzenlemesine gerek yoktur. Betatron hızlandırıcısında parçacıkların hızlandırılmasını sağlayan elektrik alan, manyetik alan tarafından oluşturulur. Betatronlar, proton gibi ağır parçacıkları hızlandırmak için uygun bir hızlandırıcı değildir.

3.6.3.4. Sinkrotronlar

Sinkrotronlarda parçacıkları yüksek enerjilere kadar ulaştırabilmek için öncelikle belli bir dairesel yörünge içinde tutmak gerekmektedir. Daha sonra parçacıklar sinkrotrona içerisine gönderilerek burada RF kaviteler ve parçacık yörüngesi boyunca küçük magnetler ile hızlandırılırlar. Sinkrotronların iki önemli türü bulunur. Bunlar depolama halkaları ve çarpıştırıcılardır. Depolama halkaları küçük sinkrotronlardan meydana gelir. Burada parçacıklar bir araya getirilip sabit bir enerjiyle uzun bir süre dairesel hareket içerisinde tutulurlar. Çarpıştırıcılar ise zıt yönlere doğru hareketlenen iki demeti kesiştirerek, en yüksek enerjiyi kullanır. Çünkü bu enerji kullanılan demetlerin ağırlık merkezindeki en yüksek enerjidir. Çarpıştırıcılar genellikle yüksek enerjiye ihtiyaç duyulan çarpışmalarda kullanılırlar.

3.7. Hızlandırıcıların Kullanım Alanları

Yüksek Enerji Fiziği'nde sabit hedef deneylerinde, zıt yönlü demet çarpışmalarında ve lineer çarpıştırıcılarda kullanılmaktadır.

Nükleer Fizik' te parçacık (elektron veya proton) hızlandırıcılarında, iyon hızlandırıcıları/çarpıştırıcılarında, sürekli demet çarpışmalarında ve sabit hedef deneylerinde kullanılmaktadır

Güç Üretimi için durgun füzyonda, seyrek yakıt cihazlarında kullanılmaktadır.

Endüstride X-ışınları ile radyografide, iyon aşılanmasında, izotop üretimi/ayrışımında, malzeme testlerinde ve gıda sterilizasyonunda kullanılmaktadır.

Sinkrotron ışınımı ise temel atomik ve moleküler fizikte, yoğun madde fiziğinde, yer fiziğinde, moleküler ve hücre biyolojisinde ve yüzey/ara yüzey fiziğinde kullanılmaktadır.

Tıp alanında, Radyoterapide, sağlık fiziğinde, anjiyografide ve mikro-cerrahide kullanılmaktadır (Şener, 2006).

3.8. Spallasyon (Parçalanma)

3.8.1. Spallasyon Reaksiyonu

Kritik-altı parçacık hızlandırıcı sürümlü sistemler (ADS) ile konvansiyonel bir reaktörün arasındaki temel fark hızlandırıcılarda yüksek enerjiye sahip proton demeti ve nötron çoğaltıcı hedef bölgesinin bulunmasıdır. Yüksek enerjiye (genellikle 500 MeV den büyük) sahip yüksek yoğunlukta sürekli bir dalga olan proton demeti ağır metal olan bir hedefe gönderilir. Bu esnada oluşan reaksiyona spallasyon reaksiyonu denir ve bu reaksiyon sonucunda hedeften bazı nükleonlar veya hafif çekirdekler çıkar. Hedef çekirdekten çıkan yüksek enerjili nükleonlar çevresindeki çekirdeklerle etkileşirler. Bu iki süreç içerisinde hedef çekirdeklerin belirli bir bölümü, ya parçalanma ya da buharlaşma yoluyla dışarı fazla olan nükleonları atarlar. Bu nükleonlar içerisinden üretilen nötronlar (20 MeV altı) birincil (kaynak) nötronlardır ve fisyon tepkimesi yapması için hedefi çevreleyen kritik-altı korda kullanılır.

ADS'de bulunan yüksek güce sahip spallasyon hedefinin amacı, kritik-altı korun çevresinde fisyon tepkimesi sürecini sağlayacak birincil yani kaynak nötron akısını sağlamaktır. Proton başına düşen spallasyon nötronlarının sayısı proton demetinin enerjisine ve hedef malzemenin çekirdeğinin kütlesine bağlıdır. ADS'ler için nötron ekonomisi çok önemlidir çünkü hızlandırıcının gücünü ve dolayısıyla maliyetini belirler. Birincil nötronlar minör aktinit ve/veya fisyon tepkimesi ürünleri içeren kritik-altı korda çoğaltılır. Bu spallasyon nötronları kararlı veya çok kısa ömürlü izotopları içinde barındıran nükleer atıklardaki yüksek seviyeli radyoaktif çekirdekleri dönüştürmek için kullanılırlar. Sonuç olarak, proton enerjisi ve hedef malzeme ile ilgili yapılan ADS çalışmalarında önemli olan proton başına açığa çıkan nötron sayılarıdır (Genç 2008).

3.8.2. Spallasyon Hedef

Spallasyon nükleer tepkimelerinde, hedef malzeme olarak Bizmut+Kurşun (Bi+Pb) karışımından oluşan sıvı haldeki metal veya genelde sıvı Pb kullanılır. Spallasyon, fisyon tepkimesine kıyasla daha fazla nötronu üretmek için uygulanan bir tepkime çeşitidir.
Reaktörde kullanılan spallasyon Pb hedef, tipik olarak 60 cm uzunluğunda, 20-50 cm çapındadır.

Hızlandırıcı Kaynaklı Sistem (ADS)'lerde proton demeti ile Pb hedef etkileşim içine sokulur (intranuclear cascade). Bu nüklitler arasındaki etkileşim kaskat (internuclear cascade) etkileşmesi olarak isimlendirilir. Bu nüklitler arası kaskatlar sırasında çok sayıda etkileşme mümkün olmaktadır. Hızlandırıcıdan gelen GeV derecesindeki enerjiye sahip bir proton, Pb spallasyon hedef ile etkileşime girdiğinde belli sayıdaki nükleonlar, mezonlar ve diğer parçacıklar (²H,³He,...) çekirdekten dışarı çıkar. Hedefe çarpan protonların sahip oldukları ortalama enerji hedef çekirdekten firlatılan bir nükleonun sahip olduğu enerjiden daha düşük olduğunda, nükleer kaskat son bulur. Fakat çok yüksek derecede uyarılan hedef çekirdek (denge öncesi durum), yüksek enerjili fisyon (Hedef; Toryum, Uranyum'dan yapılmış ise) parçacık emisyonu ve gama emisyonu ile bozunuma uğrar. Bütün bu bozulma modlarında, spallasyon, buharlaşma ve fisyon tepkimesine neden olacak nötron emisyonu daha baskındır.

Hızlandırıcı Kaynaklı Sistem (ADS) tasarımında proton başına düşen nötron sayısı anahtar parametredir. Nötron verimi kullanılan hedef malzemeye bağlı bir durumdur (Pb, Bi, U, Th gibi). Örneğin en yaygın olarak üzerinde çalışılan Pb spallasyon hedef için 1 GeV'lik proton yaklaşık 15 nötron üretir. Çeşitli türdeki (spallasyon, fisyon, buharlaşma) tepkimelere bağlı olarak, oluşan nötron enerji spektrumu birkaç keV'den başlar. Yayımlanan nötronların %90'ı 15 MeV'in altında enerjiye sahiptirler. Açısal dağılımları izotropiktirler. Enerji dağılımı, ortalama nötron enerji değeri 2 MeV'in biraz altında ve Maxwell dağılımına uymaktadır. Yani, nötron enerjileri, orta (intermediate) ve hızlı (fast) nötron karakteristiklerine sahiptir (Karadeniz vd 2001).

3.8.3. Spallasyon Nötron Hedefi

Spallasyon nötron hedefin (SNH) görevi yüksek enerjiye sahip mermi parçacıklar ile düşük enerjili nötronları oluşturmaktır. SNH tasarımı nötronik verim optimizasyonuna dayalı bir tasarımdır. Bundan dolayı, hedef malzemesinde aranan özellikler şu şekildedir(Genç 2008). Yüksek atom numarası, yüksek yoğunluk, yüksek/düşük erime

noktası(katı/sıvı), yüksek ısı iletim katsayısı, nötron absorbsiyonunda düşük rezonans, termal nötronlar için düşük absorbsiyon, yüksek kullanılabilirlilik ve düşük maliyet.

3.9. Yöntem

Hızlandırılmış parçacıklarla oluşturulan reaksiyonlar sonucunda elde edilen tesir kesitleri özellikle nükleer fizikte ve tıp biliminde önemli bir yer tutmaktadır. Bu tür reaksiyonların oluşturulması esnasında oluşabilecek sorunların giderilebilmesi için tesir kesitlerinin veya yayınlanma spektrumlarının deneysel olarak ölçülebilmesi ve önceden oluşabilecek durumların belirlenebilmesi için de teorik hesaplamaların yapılabilmesi gerekmektedir. Örnek verecek olursak, gönderilen parçacığa göre hangi enerji aralığında maksimum tesir kesiti olabileceğini veya gönderilen parçacığın enerjisinin hangi aralıkta olması gerektiğini görebilmek adına bu hesaplamaların önemi oldukça fazladır. Diğer bir taraftan da, nükleer fizik alanının sahip olduğu temel sorunlarının aşılabilmesi için çeşitli modellerin nükleer reaksiyonlarda etkin olduğu rolü teorik olarak hesaplamak ve deneysel olarak gözlemek gereklidir.

Nükleer reaksiyonların daha detaylı olarak farklı enerjiler için tesir kesitlerinin ve spektral yayınlanma şeklinin incelenmesi önemli bir durumdur. Örneğin, reaktörlerde üretilen geçici çekirdekler genel itibariyle kısa yarı ömürlüdür. Dolayısıyla, üretilen bu çekirdeklerin tesir kesitlerinin ve yayınlanma spektrumlarının doğrudan ölçülmesi pek mümkün olmamaktadır. Bu sebebe binayen, zaman kazanılması adına yapılacakların en önemlisi bu tesir kesitlerinin teorik olarak önceden hesaplanmasıdır. Nükleer fizik biliminin uygulama alanlarının hayatımızda önemli bir yere sahip olması sebebiyle araştırmalar her geçen gün artmaktadır. Ülkemizin hızlandırıcılar alanındaki gelişmelerine katkıda bulunmak için teorik olarak yapılan çalışmaların da Türk Hızlandırıcı Projesi (TAC) veri tabanına katkısı azımsanamayacak kadar önem arz etmektedir.

3.10. Nükleer Modeller

İstenilen enerjiye sahip nötronlar, nükleer deneyler sonucunda elde edilir. Gönderilen parçacıkla elde edilen nötronun enerjisini ve oluşma spektrumlarını bu deneyler

sonucunda söylemek mümkündür. Ancak deneyden önce ve deneyden sonra teorik hesaplar sonucu oluşacak tesir kesitinin ve çıkacak olan parçacıkların spektrumlarının modellerin birbiriyle olan uyumu göz önüne alınarak incelenirse hem zaman kaybı engellenecek hem de gereksiz masraftan kaçınılması sağlanmış olacaktır. İşte bu teorik tesir kesiti ve spektrum değerleri de bazı nükleer paket modeller yardımıyla hesaplanabilir.

Fakat bu hesaplanan değerlerin doğruluğu, daha önceden yapılmış deneyler ve bu deneylerin sonucunda elde edilen datalar ile karşılaştırılıp yorumlandıktan ve sahip oldukları hata payı hesabından sonra tartışılabilir. Hatta bu modeller ile daha deneyi yapılamamış yüksek seviyedeki enerjilere sahip olan parçacıkların bombardıman edilmesi sonucu oluşacak yeni izotoplar ile parçacığın tesir kesiti ve spektrumlarının hesabının mümkün olması, modellerin kullanımını cazip bir hale getirmiştir. Bu çalışmada kullanılan paket programların içeriğinde, yoğun bir matematik işlemine sahip olan, dinamiksel Liouville ve istatistiksel metot kullanılarak nümerik çözümlerin bulunduğu, matematiğin maksimum seviyede kullanıldığı denge ve denge-öncesi modeller bulunmaktadır. Bu duruma ek olarak, uyarılmış bir nükleer sistemin hamiltonyeni olarak da ifade edilirler.

 $H=H_0+V$

Burada; H₀, kararlı bileşenlere aittir. Kuantum mekaniğin zamana bağımlı perturbe (etkileşim) teorisinin çözümü ile birinci mertebeden V bulunur ve buradan da durum yoğunlukları hesabı yapılır. Bu sistemin çözülmesi de denge-öncesi modeller için alt yapıyı oluşturur (Yıldırım 2009).

3.10.1. Denge-Öncesi Modellere Giriş

Nükleer reaksiyonları iki kategori altında inceleyebiliriz. Birincisi, direkt reaksiyonlardır ve çok hızlı bir süreçte gerçekleşir. Bu tip reaksiyonların oluşum süresi yaklaşık olarak 10^{-22} saniyedir. Bu süre, hızlandırılmış bir parçacığın, hedef çekirdeği boyunca hiç etkileşime girmeden geçmesi olarak da adlandırılabilir. İkinci tip reaksiyonlar ise; bileşik çekirdek reaksiyonlarıdır ve reaksiyon süresi ortalama olarak 10^{-16} saniyedir. Bu değer

direkt reaksiyonlara göre oldukça uzundur. Bileşik çekirdek reaksiyonları istatistiksel metotlar sayesinde incelenebilirken, direkt reaksiyonlar ise mikroskobik anlamda incelenirler.

Nötronlarla oluşturulan reaksiyonlarla ilgili yapılan çalışmaların ilk yıllarında bileşik çekirdek reaksiyonları ve doğrudan etkileşimlerden başka, denge-öncesi mekanizmasının varlığı gözlemlenmiştir (Holub vd 1980). Denge-öncesi mekanizması, hedef çekirdeklerinin kütlesine ve bileşik sistemin exciton enerjisine bağlı olarak birincil nötron, proton ve alfa parçacıklarının yayımlanmasında diğer reaksiyon çeşitlerine göre daha önemli bir rol oynamaktadır (Millazzı-Colli ve Braga-Marcazzan 1974). Deneyler ve sonuçları, doğrudan ve bileşik çekirdek reaksiyonlarından başka üçüncü bir reaksiyonun var olduğunu göstermektedir. Buna denge-öncesi reaksiyon denir. Bu tip reaksiyonlarda parçacıklar, iki nükleer sistemin çarpışarak bir bileşik sistem oluşturmasıyla ve bu sistemin tam bir termal veya istatistik dengeye ulaşması arasında geçen zaman içerisinde yayımlanırlar. Bu, özellikle, yayınlanan parçacık spektrumunun yüksek enerji kısmında çok önemli bir yer tutmaktadır.

Denge-öncesi reaksiyonları inceleyen başlıca modeller

- 1- İntra nükleer kaskad modeli
- 2- Cascade-Exciton Modeli
- 3- Buharlaşma modeli
- 4- Denge öncesi model

3.10.2. Nükleer Reaksiyonlardaki Denge-Öncesi Modellerin Ortak Özellikleri

Bu çalışmada, temel olarak 4 model kullanılmıştır. Bunlar içerisinden sadece Cascade Exciton modeli yüksek enerji seviyelerine (GeV) kadar hesaplama yaparken, diğer 3 model ise, orta enerjiye sahip denge-öncesi reaksiyon hesaplamaları yapabilmektedir. Bu modeller bazı özellikleri bakımından benzerlik gösterirler. Bütün modeller istatistiksel yöntemleri içinde barındırır. Hamiltoniyen hesaplamalarında perturbe teorisinden faydalanılır ve tüm hesaplamalar için matematik maksimum seviyede kullanılır. Başka bir ortak özelliği ise, bu modeller yardımı ile pratik bir şekilde, yayımlanan parçacıkların toplam enerji spektrumlarının ve tesir kesitlerinin hesaplanabilmesidir. Bu da yapılacak

olan deney öncesi, araştırmacıların işini kolaylaştırır ve onlara deney hakkında bilgi verir. Ayrıca; bu modellerin hepsinde istatistiksel yöntemler kullanılması ile beraber, bu modellerle yapılan hesaplamalarda çekirdeğin yapısı ve açısal momentum etkisi hesaba katılmamıştır (Kalbach 1975).

3.10.3. Cascade Exciton Model

Çok yüksek enerjili olmayan parçacık ile hedef çekirdek arasında gerçeklesen reaksiyonların, denge-öncesi hesaplamalarını yapmak için kullanılan diğer bir hesaplama yöntemi de Cascade Exciton Modeli (CEM) dir. Hedefe gönderilen parçacık hedef çekirdeğin exciton işlemini gerçekleştirmektedir. Akabinde, oluşan bu nükleer sistem istatistiksel dengeye ulaşıncaya dek parçacık yayımlamaya başlar. Bu yayımlanma mekanizması; oluşmuş bileşik çekirdeğin bozunumlarına ve direkt etkileşimlerine göre incelenir.

Denge ve denge-öncesi modellerin kullanılması; nükleer yapının anlaşılması ve parçacık yayınlanma mekanizmasının açıklanması bakımından olanak sağlar. Yüksek enerjilerde nükleer reaksiyonların birçok özelliği, nükleer seviyelerde arka arkaya geçiş işlemi (Cascade) dikkate alınarak gayet iyi bir şekilde incelenebilir. Cascade Model'e göre reaksiyonlar üç aşamada meydana gelir. İlk aşaması, nükleer seviyelerdeki geçiştir. İkinci aşaması denge-öncesine, üçüncü aşaması ise, denge (veya bileşik çekirdek) durumuna karşılık gelmektedir. Genel itibariyle bu üç aşama deneysel olarak ölçülen değerlere katkı sağlar. Buna göre parçacık spektrumu için;

 $\sigma(p)dp = \sigma_{in} \{N_{cas}(p) + N_{prq}(p) + N_{eq}(p)\}dp$

yazılır. Burada: σ_{in} : İnelastik tesir kesitini; N_{cas} :Kaskat durumunu; N_{prq} :Dengeöncesi durumunu; N_{eq}: Denge durumunu ifade eder (Hesketh 2003).

Bu denklemde bulunan inelastik saçılma tesir kesiti, ardı ardına geçiş model içerisinde hesaplanır. Fakat bu tesir kesiti optiksel model hesaplamalarından bağımsızdır; bu sebeple bu model hesaplamalarında bir normalize kat sayısına ve ek veri kullanmaya gerek kalmaz.

Cascade Modeli, hızlı parçacıkların kinematik karakteristikleri hakkındaki bütün bilgileri içinde barındıran reaksiyon geometrisini hesaba katar. Fakat bu parçacıklar arasındaki etkileşimleri cascade model ihmal eder. Öte taraftan; Exciton Modeli uyarılmış bir çekirdeği; hh, ph ve pp (yani "parçacık-deşik" serbestlik derecesi dahil edilmiştir) etkileşimlerini hesaba katan yarı-parçacık gazı gibi düşünür. Cascade modeli aşamaları, gelen parçacığın sahip olduğu kinetik enerji nükleonun bağlanma enerjisini aştığı durumda gerçekleşir. Geniş bir enerji bölgesinde yayılan parçacıkların nükleer reaksiyon özelliklerinin tanımını geliştirebilmek için bu iki modeli birleştirmek önemlidir. Ayrıca, Cascade Exciton Modeli için; hızlandırılan parçacıklar ve çekirdek iki farklı tür olarak düşünülür ve bu parçacıklar arasında da oluşacak çarpışmalar ihmal edildiği için, hesaplamalarda verilen enerjiler arasında dalgalanmalar gözükür (Sarer vd 2009).

4. BULGULAR VE TARTIŞMA

4.1. Karbon (¹¹C) Üretimi

Bor-11 izotopu 20, 30 ve 45 MeV enerjili protonlarla bombardıman edilerek çeşitli ürün elementler elde edilmiştir (Z=1-6). Bor-11 izotopu 20 MeV enerjili protonlarla bombardıman edildiğinde elde edilen ürün elementler içerisinde atom numarası 2 olan ürün elementin oluşum tesir kesiti daha yüksek bir değer iken atom numarası 6 olan karbon-11 izotopunun oluşum tesir kesitinin daha düşük olduğu görülmüştür. Aynı şekilde oluşan ürün elementlerin enerjilerine bakıldığında atom numarası 1 olanın enerjisi en büyük değerde karbon-11 izotopunun enerji değerinin ise en küçük olduğu görülmüştür (şekil 4.1 ve şekil 4.2).

Bor-11 izotopu 30 MeV enerjili protonlarla bombardıman edildiğinde elde edilen ürün elementler içerisinde atom numarası 1 olan ürün elementin oluşum tesir kesiti daha yüksek bir değer iken atom numarası 6 olan karbon-11 izotopunun oluşum tesir kesitinin daha düşük olduğu görülmüştür. Aynı şekilde oluşan ürün elementlerin enerjilerine bakıldığında atom numarası 1 olanın enerjisi en büyük değerde karbon-11 izotopunun enerji değerinin ise en küçük olduğu görülmüştür (şekil 4.6 ve şekil 4.7).

Bor-11 izotopu 45 MeV enerjili protonlarla bombardıman edildiğinde elde edilen ürün elementler içerisinde atom numarası 1 olan ürün elementin oluşum tesir kesiti daha yüksek bir değer iken atom numarası 6 olan karbon-11 izotopunun oluşum tesir kesitinin daha düşük olduğu görülmüştür. Aynı şekilde oluşan ürün elementlerin enerjilerine bakıldığında atom numarası 1 olanın enerjisi en büyük değerde karbon-11 izotopunun enerji değerinin ise en küçük olduğu görülmüştür (şekil 4.11 ve şekil 4.12).

Karbon -11 izotopunun yarı ömrü 20,39 dakikadır. Nükleer tıpta beyinin olağan ve olağan dışı faaliyetlerinin izlenmesinde kullanılır

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin enerjisi
numarası (Z)	(MeV)
1	8,20
2	4,66
3	3,40
4	3,86
5	2,64
6	1,85

Tablo 4.1. Bor elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Şekil 4.1. Bor elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin tesir
numarası (Z)	kesitleri (mb)
1	299,50
2	312,70
3	129,50
4	200,00
5	230,30
6	21,52

Tablo 4.2. Bor elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Şekil 4.2. Bor elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Tablo 4.3. Bor elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı
	enerjisi (MeV)
1	5,813
2	7,237
3	5,033
4	4,614
6	3,643
7	3,594
8	6,420
9	3,126
10	2,675
11	2.247

Şekil 4.3. Bor elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Tablo	4.4.	Bor	elementinin	20	MeV	enerjili	protonlarla	bombardıman	edilmesi	sonucu	oluşan	ürün
çekird	ekleri	in küt	le dağılımı te	sir	kesiti d	leğerleri						

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün elementlerin tesir
	kesitleri (mb)
1	350,60
2	123,60
3	83,89
4	262,40
6	94,26
7	182,10
8	16,52
9	59,38
10	137,80
11	91,27

Şekil 4.4. Bor elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Z=1 ürün	Z=1 ürün	Z=2 ürün	Z=2 ürün	Z=3 ürün	Z=3 ürün
çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için
Oluşan	Oluşan	Oluşan	Oluşan	Oluşan	Oluşan
izotopun	izotopun	izotopun	izotopun	izotopun	izotopun
Kütle	Tesir kesiti	Kütle	Tesir kesiti	Kütle	Tesir kesiti
numarası	(mb)	numarası	(mb)	numarası	(mb)
1	142,20	3	50,25	6	94,26
	100.00		2 (2, 10)		25.22
2	123,60	4	262,40		35,23
3	33,64				
Z=4 ürün	Z=4 ürün	Z=5 ürün	Z=5 ürün	Z=6 ürün	Z=6 ürün
çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için
Oluşan	Oluşan	Oluşan	Oluşan	Oluşan	Oluşan
izotopun	izotopun	izotopun	izotopun	izotopun	izotopun
Kütle	Tesir kesiti	Kütle	Tesir kesiti	Kütle	Tesir kesiti
numarası	(mb)	numarası	(mb)	numarası	(mb)
7	146,80	9	28,43	10	0,090
8	16,52	10	132,10	11	21,43
9	30,95	11	69,84		
10	5,68				

Tablo 4.5. Bor elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1-6) izotop üretim tesir kesiti değerleri

Şekil 4.5. Bor elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1-6) izotop üretim tesir kesiti değerleri

Oluşan ürün elementlerin atom numarası (Z)	Oluşan ürün elementlerin enerjisi (MeV)
1	10,30
2	6,39
3	5,35
4	5,55
5	3,21
6	1,46

Şekil 4.6. Bor elementinin 30 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Tablo 4.6. Bor elementinin 30 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Oluşan ürün elementlerin atom numarası	Oluşan ürün elementlerin tesir kesitleri
(Z)	(mb)
1	372,3
2	336,0
3	142,1
4	143,4
5	154,8
6	19,0

Tablo 4.7. Bor elementinin 30 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Şekil 4.7. Bor elementinin 30 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Tablo 4.8. Bor elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı enerjisi
	(MeV)
1	8,425
2	9,042
3	8,126
4	6,154
6	5,808
7	5,961
8	4,809
9	4,347
10	3,305
11	1.870

Şekil 4.8. Bor elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Tablo	4.9.	Bor	elementinin	30	MeV	enerjili	protonlarla	bombardıman	edilmesi	sonucu	oluşan	ürün
çekird	ekleri	n küt	tle dağılımı te	esir	kesiti d	leğerleri						

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün elementlerin tesir kesitleri (mb)
1	465,0
2	115,9
3	72,1
4	285,9
6	96,8
7	124,1
8	23,7
9	47,4
10	102,8
11	64,8

Şekil 4.9. Bor elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Tablo 4.10. Bor elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1-6) izotop üretim tesir kesiti değerleri

Z=1 ürün	Z=1 ürün	Z=2 ürün	Z=2 ürün	Z=3 ürün	Z=3 ürün
çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için
Oluşan	Oluşan	Oluşan	Oluşan	Oluşan	Oluşan
izotopun	izotopun	izotopun	izotopun	izotopun	izotopun
Kütle	Tesir kesiti	Kütle	Tesir kesiti	Kütle	Tesir kesiti
numarası	(mb)	numarası	(mb)	numarası	(mb)
	. ,				
1	234,0	3	49,73	6	96,49
2	115,9	4	285,90	7	45,63
3	22,4	6	0,04		
Z=4 ürün	Z=4 ürün	Z=5 ürün	Z=5 ürün	Z=6 ürün	Z=6 ürün
çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için
Oluşan	Oluşan	Oluşan	Oluşan	Oluşan	Oluşan
izotopun	izotopun	izotopun	izotopun	izotopun	izotopun
Kütle	Tesir kesiti	Kütle	Tesir kesiti	Kütle	Tesir kesiti
numarası	(mb)	numarası	(mb)	numarası	(mb)
7	78,48	9	20,81	10	0,73
8	23,74	10	87,51	11	18,36
9	26,62	11	46,47		
10	14,53				

Şekil 4.10. Bor elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1-6) izotop üretim tesir kesiti değerleri

Oluşan ürün elementlerin atom numarası (Z)	Oluşan ürün elementlerin enerjisi (MeV)
1	15,850
2	7,239
3	5,956
4	4,476
5	2,176
6	0,966

Tablo 4.11. Bor elementinin 45 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Şekil 4.11. Bor elementinin 45 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin tesir kesitleri
numarası (Z)	(mb)
1	432,9
2	247,7
3	107,7
4	99,2
5	217,0
6	22,3

Tablo 4.12. Bor elementinin 45 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Şekil 4.12. Bor elementinin 45 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Tablo 4.13. Bor elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı enerjisi
	(MeV)
1	15,420
2	9,558
3	7,894
4	7,049
6	6,848
7	5,867
8	4,306
9	4,118
10	2,113
11	0,998

Şekil 4.13. Bor elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Tablo 4.14. Bor elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün elementlerin tesir kesitleri (mb)
1	557,60
2	81,26
3	64,74
4	208,50
6	61,36
7	79,95
8	24,30
9	33,19
10	90,54
11	68,89

Şekil 4.14. Bor elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Tablo 4.15. Bor elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1-6) izotop üretim tesir kesiti değerleri

Z=1 ürün	Z=1 ürün	Z=2 ürün	Z=2 ürün	Z=3 ürün	Z=3 ürün
çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için
Oluşan	Oluşan	Oluşan	Oluşan	Oluşan	Oluşan
izotopun	izotopun Tesir	izotopun	izotopun Tesir	izotopun	izotopun Tesir
Kütle	kesiti (mb)	Kütle	kesiti (mb)	Kütle	kesiti (mb)
numarası	· · · ·	numarası		numarası	
1	324,10	3	37,24	6	59,24
2	81,26	4	208,50	7	44,94
3	27,50	6	1,93	8	3,29
				9	0,05
Z=4 ürün	Z=4 ürün	Z=5 ürün	Z=5 ürün	Z=6 ürün	Z=6 ürün
çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için
Oluşan	Oluşan	Oluşan	Oluşan	Oluşan	Oluşan
izotopun	izotopun Tesir	izotopun	izotopun Tesir	izotopun	izotopun Tesir
Kütle	kesiti (mb)	Kütle	kesiti (mb)	Kütle	kesiti (mb)
numarası		numarası		numarası	
7	35,01	8	1,99	10	0,99
8	19,01	9	13,89	11	21,35
9	19,25	10	63,60		
10	25,94	11	47,54		

Şekil 4.15. Bor elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1-6) izotop üretim tesir kesiti değerleri

Tablo	4.16.	Çeşitli	enerji	aralıkl	larında l	Karbon-11	izotopunun	oluşumu	için	CEM03	program	ı ile
hesapla	anan	teorik	sonuçlar	r ve	Nükleer	r Enerji	Ajansından	(NEA)	alınan	deneyse	el sonuç	ların
karşıla	ştırılm	nası										

CEI	M03	DENEY (Zp, 1981)		
Enerji(MeV)	Tesir kesiti (mb)	Enerji (MeV)	Tesir kesiti (mb)	
10	88,19	10,87	282	
14	43,96	10,98	276	
18	21,31	11,88	214	
22	19,97	12,85	160	
26	19,22	13,99	198	
30	18,36	15,00	145	
34	23,04	15,94	135	
38	25,29	16,92	92	
42	22,59	17,74	106	
46	20,66	17,90	126	
		19,03	68,4	
		20,06	93,1	
		20,61	49,4	
		21,70	35,5	
		22,79	43,5	
		23,60	38,8	
		24,81	38,8	
		26,02	33,0	
		27,12	32,0	
		27,50	30,7	

Şekil 4.16. Çeşitli enerji aralıklarında Karbon-11 izotopunun oluşumu için CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması (Zp, 1981)

4.2. İndiyum (¹¹¹In) Üretimi

Kadmiyum-112 izotopu 20, 30 ve 45 MeV enerjili protonlarla bombardıman edilerek çeşitli ürün elementler elde edilmiştir (Z=1,2,47,48,49). Kadmiyum-112 izotopu 20 MeV enerjili protonlarla bombardıman edildiğinde elde edilen ürün elementler içerisinde atom numarası 49 olan İndiyum-111 izotopunun oluşum tesir kesiti daha yüksek bir değer iken atom numarası 2 ve 47 olan ürün elementlerin oluşum tesir kesitinin daha düşük ve aynı olduğu görülmüştür. Aynı şekilde oluşan ürün elementlerin enerjilerine bakıldığında atom numarası 2 olanın enerjisi en büyük değerde iken atom numarası 48 olan ürün elementin enerji değerinin ise en küçük olduğu görülmüştür (şekil 4.17 ve şekil 4.18).

Kadmiyum-112 izotopu 30 MeV enerjili protonlarla bombardıman edildiğinde elde edilen ürün elementler içerisinde atom numarası 49 olan İndiyum-111 izotopunun oluşum tesir kesiti daha yüksek bir değer iken atom numarası 2 olan ürün elementin oluşum tesir kesitinin daha düşük olduğu görülmüştür. Aynı şekilde oluşan ürün elementlerin enerjilerine bakıldığında atom numarası 2 olanın enerjisi en büyük değerde iken atom numarası 48 olan ürün elementin enerji değerinin ise en küçük olduğu görülmüştür (şekil 4.22 ve şekil 4.23).

Kadmiyum-112 izotopu 45 MeV enerjili protonlarla bombardıman edildiğinde elde edilen ürün elementler içerisinde atom numarası 1 olan ürün elementin oluşum tesir kesiti daha yüksek bir değer iken atom numarası 45 olan ürün elementin oluşum tesir kesitinin daha düşük olduğu görülmüştür. Aynı şekilde oluşan ürün elementlerin enerjilerine bakıldığında atom numarası 2 olanın enerjisi en büyük değerde iken atom numarası 48 olan ürün elementin enerji değerinin ise en küçük olduğu görülmüştür (şekil 4.27 ve şekil 4.28).

İndiyum-111 elementinin yarılanma ömrü 67,3 saattir. İndiyum-111 nükleer tıpta organ nakillerinde organın vücut tarafından kabul edilip edilmediğinin anlaşılmasında, karaciğer ve böbreklerdeki organ konsantrasyonlarının takibi, lösemi tehdidi ve tümörlerin görüntülenmesinde kullanılır.

Tablo	4.17.	Kadmiyum	elementinin	20	MeV	enerjili	protonlarla	bombardımanı	sonucu	oluşan	ürün
elemen	ntlerin	enerji değerl	eri								

Oluşan ürün elementlerin atom numarası	Oluşan ürün elementlerin enerjisi (MeV)
(Z)	
1	11,08
2	16,65
47	0,59
48	0,11
49	0,19

Şekil 4.17. Kadmiyum elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Tablo 4.18. Kadmiyum elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin
numarası (Z)	tesir kesitleri (mb)
47	1,6
48	159,5
49	1183

Şekil 4.18. Kadmiyum elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Tablo 4.19. Kadmiyum elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı
	enerjisi (MeV)
1	2,514
2	8,128
3	8,308
4	16,650
109	0,598
110	0,182
111	0,197
112	0.107

Şekil 4.19. Kadmiyum elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Tablo 4.20. Kadmiyum elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı tesir kesiti (mb)
109	1,572
110	0,134
111	1150
112	192

Şekil 4.20. Kadmiyum elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Tablo 4.21. Kadmiyum elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,47,48,49) izotop üretim tesir kesiti değerleri

		1	
Z=1 ürün	Z=1 ürün	Z=2 ürün	Z=2 ürün
çekirdek için	çekirdek için	çekirdek için	çekirdek için
Oluşan izotopun	Oluşan izotopun	Oluşan izotopun	Oluşan izotopun
Kütle numarası	Tesir kesiti (mb)	Kütle numarası	Tesir kesiti (mb)
1	152	4	1,572
2	7,484		
3	0,134		
Z=47 ürün	Z=47 ürün	Z=48 ürün	Z=48 ürün
çekirdek için	çekirdek için	çekirdek için	çekirdek için
Oluşan izotopun	Oluşan izotopun	Oluşan izotopun	Oluşan izotopun
Kütle numarası	Tesir kesiti (mb)	Kütle numarası	Tesir kesiti (mb)
109	1,572	110	0,13
		111	39,61
		112	119,80
Z=49 ürün	Z=49 ürün		
çekirdek için	çekirdek için		
Olusan	Olucan		

Z=49 urun	Z=49 urun		
çekirdek için	çekirdek için		
Oluşan	Oluşan		
izotopun Kütle	izotopun Tesir		
numarası	kesiti (mb)		
111	1110		
112	72,34		

Şekil 4.21. Kadmiyum elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,47,48,49) izotop üretim tesir kesiti değerleri

Tablo 4.	.22.	Kadmiyum	elementinin	30	MeV	enerjili	protonlarla	bombardımanı	sonucu	oluşan	ürün
elementle	erin e	enerji değerl	eri								

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin enerjisi		
numarası (Z)	(MeV)		
1	13,890		
2	18,770		
47	0,714		
48	0,231		
49	0,289		

Şekil 4.22. Kadmiyum elementinin 30 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin tesir		
numarası (Z)	kesiti (mb)		
47	17		
48	399		
49	1028		

Tablo 4.23. Kadmiyum elementinin 30 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Şekil 4.23. Kadmiyum elementinin 30 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Tablo 4.24. Kadmiyum elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı enerjisi
	(MeV)
1	3,602
2	13,290
3	12,170
4	18,830
107	0,644
108	0,708
109	0,681
110	0,301
111	0,253
112	0,154

Şekil 4.24. Kadmiyum elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Tablo 4.25. Kadmiyum elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı
	tesir kesiti (mb)
1	3489
2	44,65
3	9,55
4	16,19
107	0,20
108	12,69
109	4,64
110	883,70
111	394,50
112	148.10

Şekil 4.25. Kadmiyum elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Tablo 4.26. Kadmiyum elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,47,48,49) izotop üretim tesir kesiti değerleri

Z=1	ürün	Z=1	ürün	Z=2	ürün	Z=2	ürün	
çekirdek	için	çekirdek	için	çekirdek	için	çekirdek	için	
Oluşan ize	otopun	Oluşan iz	zotopun	Oluşan iz	, Olusan izotopun		Oluşan izotopun	
Kütle num	arası	Tesir kes	iti (mb)	Kütle nun	narası	Tesir kesiti (mb)		
			. ,					
1		345,70		3		0,332		
2		44,6	55	4		1,619		
3		9,2	2					
Z=47	ürün	Z=47	ürün	Z=48	ürün	Z=48	ürün	
çekirdek	için	çekirdek	için	çekirdek	için	çekirdek	için	
Oluşan ize	otopun	Oluşan iz	Oluşan izotopun		Oluşan izotopun		Oluşan izotopun	
Kütle num	arası	Tesir kes	iti (mb)	Kütle numarası		Tesir kesiti (mb)		
107 0,202		02	109)	1,35	7		
108		12,690		110)	128,	1	
109		3,292		111		166,	9	
110	110 0,332		32	112		102,	6	
111 0,274		74						
Z=49	ürün	Z=49	ürün					
çekirdek	için	çekirdek	için					
Oluşan		Oluşan						
izotopun l	Kütle	izotopun 🛛	Гesir					
numarası		kesiti (mb)						
110	110 755,3							
111 227,3								
112 45,5								

Şekil 4.26. Kadmiyum elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,47,48,49) izotop üretim tesir kesiti değerleri

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin enerjisi
numarası (Z)	(MeV)
1	18,520
2	21,110
45	1,672
46	0,849
47	0,630
48	0,326
49	0,388

Şekil 4.27. Kadmiyum elementinin 45 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin tesir kesiti
numarası (Z)	(mb)
1	793,70
2	40,74
45	0,07
46	0,56
47	57,37
48	758,40
49	623,20

Tablo 4.28. Kadmiyum elementinin 45 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Şekil 4.28. Kadmiyum elementinin 45 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri
Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı
	enerjisi (MeV)
1	6,285
2	17,970
3	17,180
4	21,100
104	1,236
105	2,328
106	0,868
107	0,826
108	0,622
109	0,453
110	0,347
111	0,235
112	0,144

Tablo 4.29. Kadmiyum elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Şekil 4.29. Kadmiyum elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Tablo 4.30. Kadmiyum elementinin 45 MeV	enerjili protonlarla	bombardıman	edilmesi	sonucu c	oluşan	ürün
çekirdeklerin kütle dağılımı tesir kesiti değerl	eri					

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı
	tesir kesiti (mb)
1	4187
2	68,440
3	14,340
4	37,160
104	0,043
105	0,028
106	6,982
107	23,840
108	19,540
109	597,900
110	389,700
111	262,800
112	138,800

Şekil 4.30. Kadmiyum elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Tablo 4.31. Kadmiyum elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,45,46,47,48,49) izotop üretim tesir kesiti değerleri

Z=1 ürün çekirdek için Oluşan izotopun Kütle numarası	Z=1 ürün çekirdek için Oluşan izotopun Tesir kesiti (mb)	Z=2 ürün çekirdek için Oluşan izotopun Kütle numarası	Z=2 ürün çekirdek için Oluşan izotopun Tesir kesiti (mb)	Z=45 ürün çekirdek için Oluşan izotopun Kütle numarası	Z=45 ürün çekirdek için Oluşan izotopun Tesir kesiti (mb)
1	714.50	3	3.58	104	0.04319
2	68 44	4	37.16	105	0.02879
3	10.75		57,10	100	0,02077
	10,75				
Z=46 ürün çekirdek için Oluşan izotopun Kütle numarası 106 107 108	Z=46 ürün çekirdek için Oluşan izotopun Tesir kesiti (mb) 0,0863 0,3599 0,1152	Z=47 ürün çekirdek için Oluşan izotopun Kütle numarası <u>106</u> 107 108	Z=47 ürün çekirdek için Oluşan izotopun Tesir kesiti (mb) 6,896 23,480 5,989	Z=48 ürün çekirdek için Oluşan izotopun Kütle numarası 108 109 110	Z=48 ürün çekirdek için Oluşan izotopun Tesir kesiti (mb) 12,4 231,1 253,9
		109	4,391	111	164,2
		110	11,110	112	96,8
		111	5,500		
Z=49 ürün çekirdek için Oluşan izotopun Kütle numarası 108 109 110	Z=49 ürün çekirdek için Oluşan izotopun Tesir kesiti (mb) 1,037 362,4 124,7 93.0				

42,0

112

Şekil 4.31. Kadmiyum elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,45,46,47,48,49) izotop üretim tesir kesiti değerleri

Tablo 4.32. Çeşitli enerji aralıklarında İndiyum-111 izotopunun oluşumu için CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması

DENEY					CEN	M03	
Deney 1(IZV,1975)	Deney 2(ARI,1994)		4) Deney 3(RCA,2014)			
Enerji (MeV)	Tesir kesiti (mb)	Enerji (MeV)	Tesir kesiti (mb)	Enerji (MeV)	Tesir kesiti (mb)	Enerji (MeV)	Tesir Kesiti (mb)
13,2	200	12,2	119	10,1	94	15	818
15,2	597	13,4	439	10,9	380	20	1110
17	823	13,6	489	11,6	686	25	942
18,3	913	14,4	449	13,0	883	30	227
19,7	970	14,9	739	13,6	520	35	131
20,9	1070	15,4	991	14,3	938	40	105
		16,2	913	15,5	1051	45	93
		16,3	965	16,0	894		
		16,8	1014	16,7	1029		
		17,6	991	17,8	1062		
		17,7	943	18,2	1021		
		18,7	930	18,9	1123		
		19,3	890	19,9	1177		
		19,8	939	20,1	1075		
		20,8	1031	20,9	1118		
		21,2	883	21,8	1016		
		22,3	912	21,9	1116		
		23,7	905	22,7	886		
		24,7	725	23,6	752		
		25,5	603	23,7	1031		
		26,4	517	24,5	672		
		27,2	452	25,3	573		
		28,1	361	26,2	467		
		28,8	309	27,0	370		
		29,8	264	27,7	333		
				28,5	308		
				29,3	271		
				30,0	258		
				30,7	219		
				31,4	201		
				32,1	208		
				32,8	178		
				33,4	176		
				34,1	161		
				34,7	159		
				35,4	174		

Şekil 4.32. Çeşitli enerji aralıklarında İndiyum-111 izotopunun oluşumu için CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması Deney : (IZV,1975) , (ARI,1994) , (RCA,2014)

4.3. Kobalt (⁵⁷Co) Üretimi

Demir-58 izotopu 12, 20 ve 29,5 MeV enerjili protonlarla bombardıman edilerek çeşitli ürün elementler elde edilmiştir (Z=1,2,25,26,27). Demir-58 izotopu 12 MeV enerjili protonlarla bombardıman edildiğinde elde edilen ürün elementler içerisinde atom numarası 27 olan Kobalt-57 izotopunun oluşum tesir kesiti daha yüksek bir değer iken atom numarası 2 ve 25 olan ürün elementlerin oluşum tesir kesitinin daha düşük ve aynı olduğu görülmüştür. Aynı şekilde oluşan ürün elementlerin enerjilerine bakıldığında atom numarası 2 olanın enerjisi en büyük değerde iken atom numarası 26 olan Demir elementinin enerji değerinin ise en küçük olduğu görülmüştür (şekil 4.33 ve şekil 4.34).

Demir-58 izotopu 20 MeV enerjili protonlarla bombardıman edildiğinde elde edilen ürün elementler içerisinde atom numarası 27 olan Kobalt-57 izotopunun oluşum tesir kesiti daha yüksek bir değer iken atom numarası 2 ve 25 olan ürün elementlerin oluşum tesir kesitinin daha düşük ve aynı olduğu görülmüştür. Aynı şekilde oluşan ürün elementlerin enerjilerine bakıldığında atom numarası 2 olanın enerjisi en büyük değerde iken atom numarası 26 olan Demir elementinin enerji değerinin ise en küçük olduğu görülmüştür (şekil 4.38 ve şekil 4.39).

Demir-58 izotopu 29,5 MeV enerjili protonlarla bombardıman edildiğinde elde edilen ürün elementler içerisinde atom numarası 1 olan ürün elementin oluşum tesir kesiti daha yüksek bir değer iken atom numarası 23 olan ürün elementin oluşum tesir kesitinin daha düşük olduğu görülmüştür. Aynı şekilde oluşan ürün elementlerin enerjilerine bakıldığında atom numarası 2 olanın enerjisi en büyük değerde iken atom numarası 26 olan Demir elementinin enerji değerinin ise en küçük olduğu görülmüştür (şekil 4.43 ve şekil 4.44).

Kobalt-57 elementinin yarılanma ömrü 271,79 gündür. Nükleer tıpta radyoizotop doz kalibratörlerinde, gama kameralar ve ölçüm sistemlerinde kaynak olarak, kalite kontrol detektörü ve gama ısını dedektörlerinin kalibrasyonunda kullanılmaktadır.

Tablo 4.33. Demir elementinin 12 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin enerjisi
numarası (Z)	(MeV)
1	5,952
2	8,459
25	0,807
26	0,199
27	0,230

Şekil 4.33. Demir elementinin 12 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin tesir
numarası (Z)	kesiti (mb)
25	12,7
26	133,6
27	870,9

Tablo 4.34. Demir elementinin 12 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Şekil 4.34. Demir elementinin 12 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Tablo 4.35. Demir elementinin 12 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı
	enerjisi (MeV)
1	2,770
4	8,459
55	0,807
58	0,226

Şekil 4.35. Demir elementinin 12 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Tablo 4.36. Demir elementinin 12 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı tesir kesiti (mb)
55	12,71
58	1004

Şekil 4.36. Demir elementinin 12 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Tablo 4.37. Demir elementinin 12 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,25,26,27) izotop üretim tesir kesiti değerleri

Z=1 ürün çekirdek	Z=1 ürün çekirdek	Z=2 ürün çekirdek	Z=2 ürün çekirdek
için Oluşan izotopun	için Oluşan izotopun	için Oluşan izotopun	için Oluşan izotopun
Kütle numarası	Tesir kesiti (mb)	Kütle numarası	Tesir kesiti (mb)
1	133,6	4	12,71
Z=25 ürün çekirdek	Z=25 ürün çekirdek	Z=26 ürün çekirdek	Z=26 ürün çekirdek
için Oluşan izotopun	için Oluşan izotopun	için Oluşan izotopun	için Oluşan izotopun
Kütle numarası	Tesir kesiti (mb)	Kütle numarası	Tesir kesiti (mb)
55	12,71	58	133,6
Z=27 ürün çekirdek	Z=27 ürün çekirdek		
için Oluşan izotopun	için Oluşan izotopun		
Kütle numarası	Tesir kesiti (mb)		
58	870,9		

Şekil 4.37. Demir elementinin 12 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,25,26,27) izotop üretim tesir kesiti değerleri

Tablo 4.38. Demir elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Oluşan ürün elementlerin atom numarası (Z)	Oluşan ürün elementlerin enerjisi (MeV)
1	8,041
2	10,210
25	0,974
26	0,289
27	0,365

Şekil 4.38. Demir elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Oluşan ürün elementlerin atom numarası	Oluşan ürün elementlerin tesir kesiti (mb)
(Z)	
25	33,1
26	394,7
27	680,9

Şekil 4.39. Demir elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Tablo 4.39. Demir elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Tablo 4.40. Demir elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı
	enerjisi (MeV)
1	3,840
2	6,099
3	5,145
4	10,210
54	1,057
55	0,974
56	0,453
57	0,382
58	0.238

Şekil 4.40. Demir elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Tablo 4.41. Demir elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı
	tesir kesiti (mb)
1	1781
2	15,99
3	0,97
4	33,16
54	0,01
55	33,15
56	0,97
57	738
58	336

Şekil 4.41. Demir elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Tablo 4.42. Demir elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,25,26,27) izotop üretim tesir kesiti değerleri

Z=1 ürün çekirdek	Z=1 ürün çekirdek	Z=2 ürün çekirdek	Z=2 ürün çekirdek		
için Oluşan izotopun	için Oluşan izotopun	için Oluşan izotopun	için Oluşan izotopun		
Kütle numarası	Tesir kesiti (mb)	Kütle numarası	Tesir kesiti (mb)		
1	377,700	4	33,16		
2	15,990				
3	0,975				
Z=25 ürün çekirdek	Z=25 ürün çekirdek	Z=26 ürün çekirdek	Z=26 ürün çekirdek		
için Oluşan izotopun	için Oluşan izotopun	için Oluşan izotopun	için Oluşan izotopun		
Kütle numarası	Tesir kesiti (mb)	Kütle numarası	Tesir kesiti (mb)		
54	0,01	56	0,975		
55	33,15	57	191,300		
		58	202,400		
Z=27 ürün çekirdek	Z=27 ürün çekirdek				
için Oluşan izotopun	için Oluşan izotopun				
Kütle numarası	Tesir kesiti (mb)				

546,8

134,2

57

58

Şekil 4.42. Demir elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,25,26,27) izotop üretim tesir kesiti değerleri

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin enerjisi
numarası (Z)	(MeV)
1	9,90
2	12
23	1,69
24	1,18
25	1,13
26	0,46
27	0,47

Tablo 4.43. Demir elementinin 29,5 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Şekil 4.43. Demir elementinin 29,5 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Tablo	4.44.	Demir	elementinin	29,5	MeV	enerjili	protonlarla	bombardımanı	sonucu	oluşan	ürün
elemer	ntlerin	oluşum t	tesir kesitleri								

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin tesir kesiti
numarası (Z)	(mb)
1	717,50
2	87,29
23	0,23
24	4,29
25	87,09
26	704,10
27	299,50

Şekil 4.44. Demir elementinin 29,5 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Tablo 4.45. Demir elementinin 29,5 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı
	enerjisi (MeV)
1	5,799
2	10,500
3	9,540
4	12,020
51	1,694
53	0,928
54	1,167
55	1,328
56	0,587
57	0,489
58	0,241

Şekil 4.45. Demir elementinin 29,5 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Tablo 4.46. Demir elementinin 29,5 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı
	tesir kesiti (mb)
1	1999
2	57,03
3	20,40
4	84,41
51	0,23
53	0,02
54	71,84
55	12,75
56	277,60
57	534,40
58	198,40

Şekil 4.46. Demir elementinin 29,5 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Tablo 4.47. Demir elementinin 29,5 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,23,24,25,26,27) izotop üretim tesir kesiti değerleri

Z=1 ürün	Z=1 ürün	Z=2 ürün	Z=2 ürün	Z=23 ürün	Z=23 ürün
çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için
Oluşan	Oluşan	Oluşan	Oluşan	Oluşan	Oluşan
izotopun	izotopun Tesir	izotopun	izotopun Tesir	izotopun	izotopun Tesir
Kütle	kesiti (mb)	Kütle	kesiti (mb)	Kütle	kesiti (mb)
numarası		numarası		numarası	
1	643	3	2,88	51	0,23
2	57,03	4	84,41		
3	17,52				
Z=24 ürün	Z=24 ürün	Z=25 ürün	Z=25 ürün	Z=26 ürün	Z=26 ürün
çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için	çekirdek için
Oluşan	Oluşan	Oluşan	Oluşan	Oluşan	Oluşan
izotopun	izotopun Tesir	izotopun	izotopun Tesir	izotopun	izotopun Tesir
Kütle	kesiti (mb)	Kütle	kesiti (mb)	Kütle numaras	kesiti (mb)
numarası		numarası			
54	4,293	53	0,021	55	0,5
		54	67,540	56	263,5
		55	12,190	57	298,7
		56	2,837	58	141,4
		57	4,501		
Z=27 ürün	Z=27 ürün				
çekirdek için	çekirdek için				
Oluşan	Oluşan				
izotopun	izotopun				
Kütle	Tesir kesiti				
numarası	(mb)				
56	11,27				
57	231,20				
58	57,05				
	40000				
			26 ^{Fe⁵⁸(p,2n) X}		
	=		Е _р = 29.5 МеV		
	1000 - Z=1	I_			
		₽		√ Z=26	

Şekil 4.47. Demir elementinin 29,5 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,23,24,25,26,27) izotop üretim tesir kesiti değerleri

Deney (Levko	ovskij,1991)	CEM03			
Enerji(MeV)	Tesir kesiti(mb)	Enerji(MeV)	Tesir kesiti(mb)		
12,1	33	13,5	2,407		
12,8	98	15	134		
13,8	300	17	455		
14,8	394	19	552		
15,8	521	21	533		
16,7	573	23	478		
17,5	620	25	439		
18,3	612	27	353		
19,3	622	29	255		
20,3	626				
21,4	600				
22,2	572				
23,1	522				
24	509				
24,8	424				
25,7	330				
26,6	336				
27,6	286				
28,5	248				
29,5	198				

Tablo 4.48. Çeşitli enerji aralıklarında Kobalt-57 izotopunun oluşumu için CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması

Şekil 4.48. Çeşitli enerji aralıklarında Kobalt-57 izotopunun oluşumu için CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması (Levkovskij,1991)

4.4 Oksijen (¹⁵O) Üretimi

Azot -7 izotopu 20, 30 ve 45 MeV enerjili protonlarla bombardıman edilerek çeşitli ürün elementler elde edilmiştir (Z=1,2,4,6,7,8). Azot-7 izotopu 20 MeV enerjili protonlarla bombardıman edildiğinde elde edilen ürün elementler içerisinde atom numarası 2 olan ürün elementin oluşum tesir kesiti daha yüksek bir değer iken atom numarası 4 olan ürün elementin oluşum tesir kesitinin daha düşük olduğu görülmüştür. Aynı şekilde oluşan ürün elementlerin enerjilerine bakıldığında atom numarası 1 olanın enerjisi en büyük değerde iken atom numarası 8 olan Oksijen elementinin enerji değerinin ise en küçük olduğu görülmüştür (şekil 4.49 ve şekil 4.50).

Azot-7 izotopu 30 MeV enerjili protonlarla bombardıman edildiğinde elde edilen ürün elementler içerisinde atom numarası 1 olan ürün elementin oluşum tesir kesiti daha yüksek bir değer iken atom numarası 3 olan ürün elementin oluşum tesir kesitinin daha düşük olduğu görülmüştür. Aynı şekilde oluşan ürün elementlerin enerjilerine bakıldığında atom numarası 1 olanın enerjisi en büyük değerde iken atom numarası 8 olan Oksijen elementinin enerji değerinin ise en küçük olduğu görülmüştür (şekil 4.54 ve şekil 4.55).

Azot-7 izotopu 45 MeV enerjili protonlarla bombardıman edildiğinde elde edilen ürün elementler içerisinde atom numarası 1 olan ürün elementin oluşum tesir kesiti daha yüksek bir değer iken atom numarası 4 olan ürün elementin oluşum tesir kesitinin daha düşük olduğu görülmüştür. Aynı şekilde oluşan ürün elementlerin enerjilerine bakıldığında atom numarası 1 olanın enerjisi en büyük değerde iken atom numarası 8 olan Oksijen elementinin enerji değerinin ise en küçük olduğu görülmüştür (şekil 4.59 ve şekil 4.60).

Oksijen-15 elementinin yarı ömrü 122,24 saniyedir. Nükleer tıpta PET görüntülemede kullanılır.

Tablo	4.49.	Azot	elementinin	20 M	ſeV	enerjili	protonlarla	bombardımanı	sonucu	oluşan	ürün e	elementl	lerin
enerji	değer	leri											

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin enerjisi
numarası (Z)	(MeV)
1	6,718
2	5,700
4	3,424
6	3,035
7	1,073
8	1,058

Şekil 4.49. Azot elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin tesir
numarası (Z)	kesiti (mb)
1	190,8
2	348,1
4	0,01
6	280,2
7	189,4
8	71,2

Tablo 4.50. Azot elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Şekil 4.50. Azot elementinin 20 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Tablo	4.51.	Azot	elementinin	20	MeV	enerjili	protonlarla	bombardıman	edilmesi	sonucu	oluşan	ürün
çekird	leklerir	ı kütle	dağılımı ene	erji (değerle	eri						

Oluşan ürün çekirdek kütle	Oluşan ürün çekirdek kütle
dagiiimi	dagilimi enerjisi (MeV)
1	6,011
2	5,568
3	3,079
4	5,702
8	3,424
12	3,043
13	1,089
14	1,017
15	1,076

Şekil 4.51. Azot elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Tablo 4.52. Azot elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı tesir kesiti (mb)
1	249,200
2	24,840
3	0,145
4	347,900
8	0,016
12	279,300
13	0,145
14	37,5400
15	223,800

Şekil 4.52. Azot elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Tablo 4.53. Azot elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,4,6,7,8) izotop üretim tesir kesiti değerleri

Z=1 ürün çekirdek için	Z=1 ürün çekirdek için	Z=2 ürün çekirdek için	Z=2 ürün çekirdek için
Oluşan izotopun Kütle	Oluşan izotopun Tesir	Oluşan izotopun Kütle	Oluşan izotopun Tesir
numarası	kesiti (mb)	numarası	kesiti (mb)
1	166	3	0,145
2	24,8	4	347,900
Z=4 ürün çekirdek için	Z=4 ürün çekirdek için	Z=6 ürün çekirdek için	Z=6 ürün çekirdek için
Oluşan izotopun Kütle	Oluşan izotopun Tesir	Oluşan izotopun Kütle	Oluşan izotopun Tesir
numarası	kesiti (mb)	numarası	kesiti (mb)
8	0,01674	12	279,300
		13	0,014
		14	0,071
Z=7 ürün çekirdek için	Z=7 ürün çekirdek için	Z=8 ürün çekirdek için	Z=8 ürün çekirdek için
Oluşan izotopun Kütle	Oluşan izotopun Tesir	Oluşan izotopun Kütle	Oluşan izotopun Tesir
numarası	kesiti (mb)	numarası	kesiti (mb)
14	36,83	15	71,25
15	152,50		

Şekil 4.53. Azot elementinin 20 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1,2,4,6,7,8) izotop üretim tesir kesiti değerleri

Tablo 4.54. Azot elementinin 30 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin enerjisi
numarası (Z)	(MeV)
1	10,990
2	5,061
3	4,180
4	3,884
5	2,220
6	2,705
7	1,257
8	1.073

Şekil 4.54. Azot elementinin 30 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin tesir kesiti
numarası (Z)	(mb)
1	396,800
2	233,900
3	0,005
4	0,061
5	7,607
6	69,590
7	321,600
8	64,740

Tablo 4.55. Azot elementinin 30 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Şekil 4.55. Azot elementinin 30 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin oluşum tesir kesitleri

Tablo 4.56. Azot elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Oluşan ürün çekirdek kütle	Oluşan ürün çekirdek kütle
dağılımı	dağılımı enerjisi (MeV)
1	10,10
2	8,83
3	6,16
4	4,98
7	4,18
8	3,88
10	1,52
11	2,21
12	4,34
13	1,86
14	1,39
15	0,99

Şekil 4.56. Azot elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Tablo	4.57.	Azot	elementinin	30	MeV	enerjili	protonlarla	bombardıman	edilmesi	sonucu	oluşan	ürün
çekirdeklerin kütle dağılımı tesir kesiti değerleri												

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı
	tesir kesiti (mb)
1	511,600
2	65,890
3	18,210
4	224,100
7	0,005
8	0,061
10	0,015
11	8,614
12	33,710
13	18,110
14	197,100
15	206,000

Şekil 4.57. Azot elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Tablo 4.58. Azot elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1-8) izotop üretim tesir kesiti değerleri

Z=1 ürün çekirdek	Z=1 ürün çekirdek	Z=2 ürün çekirdek	Z=2 ürün çekirdek için							
için Oluşan izotopun	için Oluşan izotopun	için Oluşan izotopun	Oluşan izotopun Tesir							
Kütle numarası	Tesir kesiti (mb)	Kütle numarası	kesiti (mb)							
1	322,40	3	9,789							
2	65,89	4	224,100							
3	8,42									
Z=3 ürün çekirdek	Z=3 ürün çekirdek	Z=4 ürün çekirdek	Z=4 ürün çekirdek için							
için Oluşan izotopun	için Oluşan izotopun	için Oluşan izotopun	Oluşan izotopun Tesir							
Kütle numarası	Tesir kesiti (mb)	Kütle numarası	kesiti (mb)							
7	0,00511	8	0,06134							
Z=5 ürün çekirdek	Z=5 ürün çekirdek	Z=6 ürün çekirdek	Z=6 ürün çekirdek için							
için Oluşan izotopun	için Oluşan izotopun	için Oluşan izotopun	Oluşan izotopun Tesir							
Kütle numarası	Tesir kesiti (mb)	Kütle numarası	kesiti (mb)							
10	0,015	11	1,022							
11	7,591	12	33,710							
		13	13,900							
		14	20,960							
Z=7 ürün çekirdek	Z=7 ürün çekirdek	Z=8 ürün çekirdek	Z=8 ürün çekirdek için							
için Oluşan izotopun	için Oluşan izotopun	için Oluşan izotopun	Oluşan izotopun Tesir							
Kütle numarası	Tesir kesiti (mb)	Kütle numarası	kesiti (mb)							
13	4,207	14	0,37							
14	175,800	15	64,37							
15	141,600									

Şekil 4.58. Azot elementinin 30 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1-8) izotop üretim tesir kesiti değerleri

Tablo	4.59.	Azot	elemen	itinin 4	45 Me	V ener	ili p	protonlarla	bomba	rdımanı	sonucu	oluşan	ürün	element	lerin
enerji	değerl	leri													

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin enerjisi
numarası (Z)	(MeV)
1	14,390
2	6,994
3	3,398
4	3,539
5	3,419
6	2,384
7	1,690
8	1,125

Şekil 4.59. Azot elementinin 45 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin enerji değerleri

Oluşan ürün elementlerin atom	Oluşan ürün elementlerin tesir
numarası (Z)	kesitleri (mb)
1	478,900
2	144,500
3	1,534
4	0,740
5	19,420
6	134,400
7	227,400
8	32,080

Tablo 4.60. Azot elementinin 45 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin tesir kesiti değerleri

Şekil 4.60. Azot elementinin 45 MeV enerjili protonlarla bombardımanı sonucu oluşan ürün elementlerin tesir kesiti değerleri
Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı enerjisi
	(MeV)
1	13,280
2	12,150
3	10,990
4	6,465
6	3,749
7	3,265
8	5,975
9	3,838
10	3,237
11	3,560
12	2,973
13	2,474
14	1,777
15	1,050

Tablo 4.61. Azot elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Şekil 4.61. Azot elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı enerji değerleri

Tablo	4.62.	Azot	elementinin	45	MeV	enerjili	protonlarla	bombardıman	edilmesi	sonucu	oluşan	ürün
çekird	eklerir	ı kütle	dağılımı tesi	ir ke	esiti de	ğerleri						

Oluşan ürün çekirdek kütle dağılımı	Oluşan ürün çekirdek kütle dağılımı tesir		
	kesiti (mb)		
1	610,60		
2	81,90		
3	32,46		
4	130,20		
6	0,26		
7	1,58		
8	0,03		
9	0,32		
10	4,07		
11	21,94		
12	51,24		
13	59,11		
14	174,10		
15	102,90		

Şekil 4.62. Azot elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin kütle dağılımı tesir kesiti değerleri

Tablo 4.63. Azot elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1-8) izotop üretim tesir kesiti değerleri

Z=1 ürün çekirdek için	Z=1 ürün çekirdek için	Z=2 ürün çekirdek için	Z=2 ürün çekirdek için
Oluşan izotopun Kütle	Oluşan izotopun Tesir	Oluşan izotopun Kütle	Oluşan izotopun Tesir
numarası	kesiti (mb)	numarası	kesiti (mb)
1	378,80	3	14,27
2	81,90	4	130,20
3	18,18		
Z=3 ürün çekirdek için	Z=3 ürün çekirdek için	Z=4 ürün çekirdek için	Z=4 ürün çekirdek için
Oluşan izotopun Kütle	Oluşan izotopun Tesir	Oluşan izotopun Kütle	Oluşan izotopun Tesir
numarası	kesiti (mb)	numarası	kesiti (mb)
6	0,269	7	0,3219
7	1,265	8	0,0396
		9	0,3219
		10	0,0573
Z=5 ürün çekirdek için	Z=5 ürün çekirdek için	Z=6 ürün çekirdek için	Z=6 ürün çekirdek için
Oluşan izotopun Kütle	Oluşan izotopun Tesir	Oluşan izotopun Kütle	Oluşan izotopun Tesir
numarası	kesiti (mb)	numarası	kesiti (mb)
9	0,0044	11	6,55
10	4,0210	12	51,23
11	1,5380	13	47,22
12	0,0088	14	29,43
Z=7 ürün çekirdek için	Z=7 ürün çekirdek için	Z=8 ürün çekirdek için	Z=8 ürün çekirdek için
Oluşan izotopun Kütle	Oluşan izotopun Tesir	Oluşan izotopun Kütle	Oluşan izotopun Tesir
numarası	kesiti (mb)	numarası	kesiti (mb)
13	11,89	14	2,306
14	142,40	15	29,780
15	73,12		

Şekil 4.63. Azot elementinin 45 MeV enerjili protonlarla bombardıman edilmesi sonucu oluşan ürün çekirdeklerin (Z=1-8) izotop üretim tesir kesiti değerleri

Tablo 4.64. Çeşitli enerji aralıklarında Oksijen-15 izotopunun oluşumu için CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması

Deney	(Pr,1990)	CEM03		
Enerji (MeV)	Tesir kesiti (mb)	Enerji (MeV)	Tesir kesiti (mb)	
15,89	59,0	15	19,28	
18,55	36,0	18	50,09	
21,03	21,0	20	71,25	
23,49	15,5	23	84,83	
26,03	14,2	26	77,76	
28,08	15,1	28	72,93	

Şekil 4.64. Çeşitli enerji aralıklarında Oksijen-15 izotopunun oluşumu için CEM03 programı ile hesaplanan teorik sonuçlar ve Nükleer Enerji Ajansından (NEA) alınan deneysel sonuçların karşılaştırılması (Pr,1990)

5. SONUÇLAR VE ÖNERİLER

Karbon-11 izotopu için CEM03 ile hesaplanan teorik sonuçlar ve Nükleer Enerji Ajansı'ndan (NEA) alınan deneysel veriler karşılaştırıldığında verilerin bir uyum içerisinde oldukları gözlemlenmiştir. CEM03 programından alınan veriler incelendiğinde enerji değerleri arttıkça tesir kesiti değerlerinin genel olarak azaldığı gözlemlenmiştir. CEM03 programı ile elde edilen veriler içerisinde tesir kesiti değerinin en yüksek olduğu enerji değeri 10 MeV, en düşük olduğu değer ise 30 MeV olduğu gözlemlenmiştir.

İndiyum-111 izotopu için CEM03 ile hesaplanan teorik sonuçlar ve Nükleer Enerji Ajansı'ndan (NEA) alınan deneysel veriler karşılaştırıldığında verilerin bir uyum içerisinde oldukları gözlemlenmiştir. CEM03 programından alınan veriler incelendiğinde enerji değerleri arttıkça tesir kesiti değerlerinin genel olarak azaldığı gözlemlenmiştir. CEM03 programı ile elde edilen veriler içerisinde tesir kesiti değerinin en yüksek olduğu enerji değeri 20 MeV, en düşük olduğu değer ise 45 MeV olduğu gözlemlenmiştir.

Kobalt-57 izotopu için CEM03 ile hesaplanan teorik sonuçlar ve Nükleer Enerji Ajansı'ndan (NEA) alınan deneysel veriler karşılaştırıldığında verilerin bir uyum içerisinde oldukları gözlemlenmiştir. CEM03 programından alınan veriler incelendiğinde enerji değerleri arttıkça tesir kesiti değerlerinin genel olarak attığı gözlemlenmiştir. CEM03 programı ile elde edilen veriler içerisinde tesir kesiti değerinin en yüksek olduğu enerji değeri 21 MeV, en düşük olduğu değer ise 13,5 MeV olduğu gözlemlenmiştir.

Oksijen-15 izotopu için CEM03 ile hesaplanan teorik sonuçlar ve Nükleer Enerji Ajansı'ndan (NEA) alınan deneysel veriler karşılaştırıldığında verilerin düşük enerji seviyelerinde uyum içerisindeyken yüksek enerji seviyelerinde uyumsuzluk içerisinde oldukları gözlemlenmiştir. CEM03 programından alınan veriler incelendiğinde enerji değerleri arttıkça tesir kesiti değerleri genel olarak artış göstermiştir. CEM03 programı ile elde edilen veriler içerisinde tesir kesiti değerinin en yüksek olduğu enerji değeri 23 MeV, en düşük olduğu değer ise 15 MeV olduğu gözlemlenmiştir.

KAYNAKLAR LİSTESİ

Anders W (1987), Private communication

Arı J (1994) Applied Radiation and Isotopes 45: 239

Bas J (1975) Bull.Russian Academy of Sciences - Physics 39(1): 18

Demirkol İ (2003) Enerji Yükselteci Tasarımında Proton-Ağır Element Çarpışmasında Nötron Üretimi. Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, s. 114

Demirkol İ (2006) Analysis of Isotopic Yields of Primary Residues in 1 A GeV 208Pb+p Reactions. Chinese Journal Of Physics 44(6): 418-429

Demirkol İ, Tel E, Özmen A (2003) Pb(1 GeV)+p Reaksiyonunda Üretilen Atık Çekirdeklerin İzotopik Üretim Tesir Kesitleri. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi 3(1-2): 91-98

Demirkol İ, Tel E, Arasoğlu A (2005) p+ ²³²Th Çarpışmasında Spallasyon Nötron Üretimi ve Enerjileri. Yeni Ve Yenilenebilir Enerji Kaynakları Enerji Yönetimi Sempozyumu, Kayseri, Türkiye

Genç GB (2008) Yüksek Enerjili Proton Sürümlü Hedeflerde Nötronik Limitler. VI. YUUP Çalıştayı, Ankara, Türkiye

Harder K, Binash F, Kaminsky A, Mordhorst E, Scobel W, Trabandt MR (1987) Angle and Enrgy Differential Cross Sections For the (P,XN) Reactions of 25,5 MeV Protons with Pb-204,206,207,208. Hamburg Univ.,Inst.f. Experimental physik Reports 87: 01

http://www.taek.gov.tr/kurumsal/birimler/bagli-kuruluslar/sanaem/190-protonhizlandiricisi-bolumu/807-proton-hizlandirici-tesisi.html. (erişim tarihi; 30.10.2013)

http://parcacikfizigi.blogspot.com/2007/11/paracik-hizlandiricilari.html (erişim tarihi; 12.03.2014)

Izv J (1975) Izv. Rossiiskoi Akademii Nauk, Ser. Fiz. 39: 24

Juelic C (1991) Conf.on Nucl.Data for Sci.and Technol. Juelich 1991, page 603

Krane KS (2002) Introductory Nuclear Physics (Çeviri Editörü: B. Şarer) Nükleer Fizik. Palme yayıncılık, Ankara

Karadeniz H, Çetiner MA, Yücel H, Arıkan P, Sultansoy S (2001) Hızlandırıcı Güdümlü Reaktörler / Enerji Yükseltici. I. Ulusal Parçacık hızlandırıcıları ve uygulamaları ve Uygulamaları kongresi, Ankara, Türkiye

Kalbach C (1975) Pre-equilibrium Models in General the Griffin Model in Particular. Acta. Phys. No: 2-3: 25-38

Levkovskij B (1991) Levkovskij, Act. Cs. By Protons and Alphas, Moscow

Pr J (1990) Physical Review, Part C, Nuclear Physics 42: 748

Rca J (2014) Radiochimica Acta 102: 1111

Sarer B, Aydın A, Günay M, Korkmaz M.E, Tel E (2009) Calculations of Neutron-Induced Production Cross-Sections of 180,182,183,184,186W up to 20 MeV. Annals of Nuclear Energy 36(4): 417-426

Sultansoy S (2001) Parçaçık Hızlandırıcıları: Dün, Bugün, Yarını. I. Ulusal Parçacık Hızlandırıcıları ve Uygulamaları Kongresi, Ankara, Türkiye

Tel, E, Übeyli M, Aytekin H, Demirkol İ, Arasoğlu A (2005) ²³²Th ve ²³⁸U Çekirdeklerinin Nötron Bombardımanından Yayınlanan Nötronların Kinetik Enerji Dağılımı. TFD, Muğla, Türkiye

Vaishnene L.A (2010) et. al. Isotopic effect in the energy dependence of the total ission cross section of lead and Bi-209 nuclei for protons with energies up to 1 GeV. Izv. Rossiiskoi Akademii Nauk, Ser. Fiz. 74: 529

Yavaş Ö (2004) Parçacık Hızlandırırcıları. II. Ulausal Parçacık Hızalandırırcıları ve Uygulama Kongresi, Ankara, Türkiye

Yıldırım G (2009) Bazı Amforter Grubu Hedef Çekirdeklerin Proton Giriş Reaksiyonlarında Üretilen Nötronların Reaksiyon Tesir Kesitlerinin ve Yayınlanma Spektrumlarının İncelenmesi. Yüksek Lisans, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta, s. 62

YAŞAR G (2010) Tıbbi Uygulamalarda Kullanılan Bazı Radyoizotopların Reaksiyon Tesir Kesitlerinin ve Nötron Yayınlanma Spektrumlarının İncelenmesi. Yüksek Lisans Tezi, Isparta, s. 98

Yılmaz M (1998) Çekirdek Fiziği. Balıkesir Üniversitesi Necatibey Eğitim Fakültesi Yayınları, Balıkesir

Yüksel AN (2008) siklotron tipi hızlandırıcı kullanılarak radyoizotop üretimi ve bu radyoizotopların medikal/endüstriyel alanlarda kullanımı. Yüksek lisans tezi,Ankara,Türkiye

Zp J (1981) /A,301,353,81 Zeitschrift fuer Physik A, Hadrons and Nuclei 301: 353

ÖZGEÇMİŞ

1984 yılında Bingöl'de doğdu. İlk, orta ve lise öğrenimini Bingöl'de tamamladı. Liseyi Bingöl Anadolu Öğretmen Lisesi'nde okudu.2008 yılında Kafkas Üniversitesi Fen Edebiyat Fakültesi Fizik Bölümü'nü bitirdi. Kafkas Üniversitesi Fen Bilimleri Enstitüsü'nde tezsiz yüksek lisans yaptı.