• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of elevated temperature on pumice based geopolymer composites

Thumbnail
Date
2015
Author
Yadollahi, M.M. and Benli, A. and Demirboʇa, R.
Metadata
Show full item record
Abstract
Aluminosilicate type materials can be activated in alkaline environment and can produce geopolymer cements with low environmental impacts. Geopolymers are believed to provide good fire resistance so the effects of elevated temperatures on mechanical and microstructural propertiesofpumice based geopolymer were investigatedinthis study. Pumice based geopolymer was exposed to elevated temperatures of 100, 200, 300, 400, 500, 600, 700 and 800°C for 3 h. The residual strength of these specimens were determined after cooling at room temperature as well as ultrasonic pulse velocity, and the density of pumice based geopolymer pastes before and after exposing to high temperature was determined. Microstructures of these samples were investigated by Fourier transform infrared for all temperatures and SEM analyses for samples that were exposed to 200, 400, 600 and 800°C. Specimens, which were initially grey, turned whitish accompanied by the appearance of cracks as temperatures increased to 600 and 800°C. Consequently, compressive strength losses in geopolymer paste were increased with increasing temperature level. On the other hand, compressive strength of geopolymer paste was less affected by high temperature in comparison with the ordinary Portland cement. As a result of this study, it is concluded that pumice based geopolymer is useful in compressive strength losses exposed to elevated temperatures. © Institute of Materials, Minerals and Mining 2015.
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937397370&doi=10.1179%2f1743289815Y.0000000020&partnerID=40&md5=598dafe4cff99981c74b17f59108c798
http://acikerisim.bingol.edu.tr/handle/20.500.12898/4809
Collections
  • Scopus İndeksli Yayınlar Koleksiyonu [1357]





Creative Commons License
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 



| Politika | Rehber | İletişim |

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV