• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning based power quality event classification using wavelet - Entropy and basic statistical features

Thumbnail
Tarih
2016
Yazar
Ucar, F. and Alcin, O.F. and Dandil, B. and Ata, F.
Üst veri
Tüm öğe kaydını göster
Özet
Today's industrial environment is smarter than ever before. Most production lines include electrical devices which are able to communicate each other and controlled from a single station with automation systems. Most of those elements have an internet connection link known as industrial internet. Development of smart technology with industrial internet comes with a need of monitoring. Monitoring technologies are emergent systems that focus on fault detection, grid self - healings and online tracking of power quality issues. Present study deals with one of the essential part of an electricity grid monitoring system called power quality event classification in a manner of machine learning topic. Power quality events to be processed are generated synthetically by means of a comprehensive software tool. Classification of real-like dataset is executed using extreme learning machine which is an extremely fast learning algorithm applied to single layer neural networks. Basic statistical criteria and wavelet - entropy methods are handled to achieve distinctive features of dataset. As a performance evaluation instrument, conventional artificial neural network structure is run too. Detailed results are discussed to prove the satisfactory performance of proposed pattern recognition model. © 2016 IEEE.
Bağlantı
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991769772&doi=10.1109%2fMMAR.2016.7575171&partnerID=40&md5=377ce5b3900eb46c0efdcf399350d234
http://acikerisim.bingol.edu.tr/handle/20.500.12898/4617
Koleksiyonlar
  • Scopus İndeksli Yayınlar Koleksiyonu [1357]





Creative Commons License
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 



| Politika | Rehber | İletişim |

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy TypeBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy Type

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV