• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of body weight of Turkish tazi dogs using data mining Techniques: Classification and Regression Tree (CART) and multivariate adaptive regression splines (MARS)

Thumbnail
Tarih
2018
Yazar
Celik, S. and Yilmaz, O.
Üst veri
Tüm öğe kaydını göster
Özet
Body weight of dogs is crucial trait for breeding, racing and housekeeping. However, variables and factors that correctly estimate this trait are lacking. Here, we applied classification and regression tree (CART) and multivariate adaptive regression splines (MARS) approaches to estimate the most important variables in predicting the body weight of Turkish Tazi dogs. Using various body measurements, the CART algorithm proposed that withers height (WH), abdominal width (AW), rump height (RH) and chest depth (CD) can significant effect the body weight. Quantitatively, it was identified that values of WH> 62.500 cm and RH> 67.500 cm can positively correlated with the highest body weights. On the other hands, MARS model's finding showed that the dogs which had the values of WH >51 cm can be expected to have the highest body weights. The calculated model evaluation criteria of CART algorithm was R2=0.6889, Adj. R2=0.6810, r=0.830, SD ratio=0.5549, RMSE=1.1802, RRMSE=6.3838 and ñ=3.4884, respectively, whereas the calculated model evaluation criteria of MARS method were R2=0.9193, Adj. R2=0.8983, r=0.9588, SD ratio=0.2840, RMSE=0.6041, RRMSE=3.2635 and ñ=1.6661. Taken together, the MARS algorithm appeared to be efficient compared to CART algorithm since the MARS algorithm's goodnessof-fit criteria yielded better results. Using MARS algorithm, the body weight of animals (dogs) can be predicted and exploited in different performances. © 2018 Zoological Society of Pakistan.
Bağlantı
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043696862&doi=10.17582%2fjournal.pjz%2f2018.50.2.575.583&partnerID=40&md5=8c5bd8352272178c0f8c602b0c31fe2a
http://acikerisim.bingol.edu.tr/handle/20.500.12898/4404
Koleksiyonlar
  • Scopus İndeksli Yayınlar Koleksiyonu [1357]





Creative Commons License
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 



| Politika | Rehber | İletişim |

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy TypeBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreBy Type

Hesabım

GirişKayıt

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV