• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • 6.Araştırma Çıktıları / Research Outcomes(WOS-Scopus-TR-Dizin-PubMed)
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conformal slant riemannian maps to kähler manifolds

Thumbnail
Date
2019
Author
Akyol, M.A. and Şahin, B.
Metadata
Show full item record
Abstract
As a generalization of slant submanifolds and slant Riemannian maps, we introduce conformal slant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds. We give non-trivial examples, investigate the geometry of foliations and obtain decomposition theorems by using the existence of conformal Riemannian maps. Moreover, we also investigate the harmonicity of such maps and find necessary and sufficient conditions for conformal slant Riemannian maps to be totally geodesic. © 2019 International Academic Printing Co. Ltd.. All rights reserved.
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077306360&doi=10.3836%2ftjm%2f1502179277&partnerID=40&md5=a6a70602c4e420b9c0e3f98c602d3ec8
http://acikerisim.bingol.edu.tr/handle/20.500.12898/4201
Collections
  • Scopus İndeksli Yayınlar Koleksiyonu [1357]





Creative Commons License
DSpace@BİNGÖL by Bingöl University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 



| Politika | Rehber | İletişim |

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV