Basit öğe kaydını göster

dc.contributor.authorSevgili, Ö.
dc.date.accessioned2021-04-08T12:05:56Z
dc.date.available2021-04-08T12:05:56Z
dc.date.issued2021
dc.identifier10.1007/s10854-021-05669-0
dc.identifier.issn09574522
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85102477683&doi=10.1007%2fs10854-021-05669-0&partnerID=40&md5=0548a36ae2d2d4f92cdd82641643addd
dc.identifier.urihttp://acikerisim.bingol.edu.tr/handle/20.500.12898/3748
dc.description.abstractAu/(nanocarbon-PVP)/n-Si SDs were fabricated and their current-conduction mechanisms (CCMs) have been examined in elaborative by utilizing current–voltage (I–V) characteristics in a temperature range of 60-340 K at (± 3 V) ranges. The values of ideality factor (n) and zero-bias barrier height (ΦB0) determined from the linear-part of semi-logarithmic forward bias IF–VF properties based on Thermionic-Emission (TE) theory revealed that decrease in ΦB0 and increase in n with decreasing temperature. Additionally, Richardson constant (A*) value was very found close to its theoretical value. The values of ΦB0 and n changed from 0.173 eV to 0.837 eV and 16.60 to 2.85 with increasing temperature from 60 to 340 K. The ΦB0 relationship with temperature is disagreement with the negative temperature coefficient of the bandgap of Si for the ideal diode. The calculated higher value of n at low temperatures was attributed to the inhomogeneities of BH rather than the interlayer, surface-states (Nss), and image-force lowering. With lowing temperatures, CCMs may be governed by tunneling over the lower barriers, via Nss, and generation recombination (GR), as well as TE and hence a complete description of CCM and understanding of the formation BH, remain a compelling problem. Nss-(Ec–Ess) profile was also obtained from IF–VF data for each temperature. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
dc.language.isoEnglish
dc.sourceJournal of Materials Science: Materials in Electronics
dc.titleOn the examination of temperature-dependent possible current-conduction mechanisms of Au/(nanocarbon-PVP)/n-Si Schottky barrier diodes in wide range of voltage


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster