T.C. BİNGÖL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BETON NUMUNELERDE ALAŞIM TOZLARININ VE BOR KARBÜR KATKISININ İYONLAŞTIRICI RADYASYON ZIRHLAMA VE MEKANİK ÖZELLİKLERİNE ETKİSİ

DOKTORA TEZİ

İLHAMİ ERKOYUNCU

FİZİK ANABİLİM DALI

TEZ DANIŞMANI Prof. Dr. İskender DEMİRKOL

İKİNCİ TEZ DANIŞMANI Doç. Dr. Ferdi AKMAN

BİNGÖL-2023

T.C. BİNGÖL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BETON NUMUNELERDE ALAŞIM TOZLARININ VE BOR KARBÜR KATKISININ İYONLAŞTIRICI RADYASYON ZIRHLAMA VE MEKANİK ÖZELLİKLERİNE ETKİSİ

Prof. Dr. İskender DEMİRKOL danışmanlığında, İlhami ERKOYUNCU tarafından hazırlanan bu çalışma/..... tarihinde aşağıdaki jüri tarafından Fizik Anabilim Dalı – Nükleer Fizik Bilim Dalı'nda Doktora Tezi olarak **oybirliği** ile kabul edilmiştir.

Başkan	: Prof. Dr. Hüsnü AKSAKAL	İmza	:
Üye	: Prof. Dr. İskender DEMİRKOL	İmza	:
Üye	: Prof. Dr. Kani ARICI	İmza	:
Üye	: Prof. Dr. Zafer ŞERBETÇİ	İmza	:
Üye	: Doç. Dr. Kamuran DİLSİZ	İmza	:
Yukarı	daki sonuç;		
Enstitü	Yönetim Kurulunun// ta nolu kararı ile onaylanmıştı	arih ve Ir.	

Prof. Dr. Zafer ŞİAR Enstitü Müdürü

Bu çalışma Bingöl Üniversitesi Bilimsel Araştırmalar Proje Birimi tarafından desteklenmiştir. Proje No: BAP-FEF.2021.010

Not: Bu tezde kullanılan özgün ve başka kaynaklardan yapılan bildirişlerin, çizelge, şekil ve fotoğrafların kaynak olarak kullanımı, 5846 sayılı Fikir ve Sanat Eserleri Kanunundaki hükümlere tabidir.

ÖNSÖZ

Doktora tez çalışması sırasında ihtiyaç duyulan her anda tereddütsüz yardımlarını esirgemeyen, her anlamda destek olan çok değerli hocalarım Prof. Dr. İskender DEMİRKOL'a, Doç. Dr. Ferdi AKMAN'a ve Doç. Dr. Kamuran DİLSİZ'e şükranlarımı sunuyorum. Doktora tez çalışmasına verdikleri desteklerden dolayı Bingöl Üniversitesi Rektörlüğü Bilimsel Araştırmalar Proje Birimine (Proje Numarası: BAP-FEF.2021.010) ayrıca teşekkür ederim.

Yapmış olduğum Tez İzleme Komitesi sunumlarım sırasında tez çalışmasına ilişkin yaptıkları geri bildirim ve katkıları nedeni ile değerli hocam Prof. Dr. Zafer ŞERBETÇİ'ye, doktora tez çalışmasına ait deneysel çalışmalarım sırasında yardım ve desteklerini esirgemeyen Prof. Dr. Mustafa Recep KAÇAL'a ve Öğr. Gör. Hasan POLAT'a şükran ve teşekkürlerimi sunuyorum.

Doktora tez çalışmam boyunca desteklerini eksik etmeyen başta eşim Ümran ERKOYUNCU'ya, kızım İrem ERKOYUNCU'ya, oğlum Çınar ERKOYUNCU'ya, kıymetli arkadaşım Doç. Dr. Harun Kaya KESİK'e ve görev yerimdeki çalışma arkadaşlarıma teşekkürlerimi sunuyorum.

Bu doktora çalışması başta babam Talat ERKOYUNCU'ya ve annem Hadice ERKOYUNCU olmak üzere bütün aileme ithaf edilmiştir.

İLHAMİ ERKOYUNCU Bingöl 2023

İÇİNDEKİLER

ÖNSÖZ	i
İÇİNDEKİLER	ii
SİMGELER VE KISALTMALAR LİSTESİ	v
ŞEKİLLER LİSTESİ	vi
TABLOLAR LİSTESİ x	iv
ÖZET	xii
ABSTRACT xx	xii
1. GİRİŞ	1
2. KURAMSAL TEMELLER	27
2.1. Radyasyonun Tanımı ve Tarihçesi	27
2.1.1. Doğal Radyasyon Kaynakları	29
2.1.2. Yapay Radyasyon Kaynakları	32
2.2. Radyasyon Türleri	34
2.2.1. İyonlaştırıcı Olmayan Radyasyon	35
2.2.2. İyonlaştırıcı Radyasyon	39
2.2.2.1. X-Işınları	40
2.2.2.2. Alfa Radyasyonu	40
2.2.2.3. Beta Radyasyonu	42
2.2.2.4. Gama Radyasyonu	43
2.2.2.5. Nötron Radyasyonu	44
2.3. Radyasyonun Canlılar Üzerindeki Etkisi	48
2.4. Radyasyon Zırhlama	49
2.4.1. Gama Radyasyon Zırhlama	51
2.4.2. Nötron Radyasyon Zırhlama	55
2.4.2.1. Nötron zırhlama için kullanılan bazı materyaller	57
2.5. Radyasyonun Madde ile Etkileşimi	61
2.5.1. Gama Radyasyonun Madde ile Etkileşimi	61

2.5.1.1. Fotoelektrik	62
2.5.1.2. Compton Saçılması	63
2.5.1.3. Çift Oluşumu	65
2.5.2. Nötron Radyasyonun Madde ile Etkileşimi	66
2.5.2.1. Saçılma	66
2.6. Tesir Kesiti	69
2.7. İyonlaştırıcı Radyasyon Zırhlama Parametreleri	73
2.7.1. Lineer Azaltma Katsayısı	73
2.7.2. Kütle Azaltma Katsayısı	73
2.7.3. Etkin Atom Numarası	74
2.7.4. Yarı Kalınlık Değeri (YKD)	76
2.7.5. Onda-Bir Kalınlık Değeri (OKD)	77
2.7.6. Ortalama Serbest Yol	77
2.7.7. Radyasyon Koruma Verimliliği	77
2.8. Hızlı Nötron Uzaklaştırma Tesir Kesiti	78
2.9. Betonun Bazı Mekanik Özellikleri	79
3. MATERYAL VE YÖNTEM	82
3.1. GEANT4 Simülasyon Kodu	82
3.1.1. GEANT4 Kullanımı	83
3.2. FLUKA Simülasyon Kodu	86
3.3. XCOM Bilgisayar Programı	87
3.4. Beton Numunelerin Hazırlanması Süreci	88
3.5. Gama Radyasyonu Zırhlama için Deneysel Süreç	94
3.6. Nötron Radyasyonu Zırhlama için Teorik Süreç	97
3.7. Numunelerin Mekanik Özelliklerin İncelenmesi	97
4. BULGULAR VE TARTIŞMA	100
4.1. Kütle Azaltma Katsayılarına Ait Araştırma Bulguları	101
4.2. Gama Radyasyon Zırhlamada Lineer Azaltma Katsayılarına Ait Araştırma	
Bulguları	114
4.3. Yarı Kalınlık Değeri (YKD), Onda-Bir Kalınlık Değeri (OKD) ve Ortalama	
Serbest Yol (OSY) Parametrelerine Ait Araştırma Bulguları	127
4.4. Etkin Atom Numarası Parametresine Ait Araştırma Bulguları	164

4.5. Radyasyon Koruma Verimine Ait Araştırma Bulguları	177
4.6. Nötron Radyasyonu Zırhlama Parametrelerine Ait Araştırma Bulguları	183
4.7. Üretilen Numunelerin Mekanik Özelliklerine Ait Araştırma Bulguları	219
5. SONUÇ VE ÖNERİLER	224
KAYNAKLAR	234
ÖZGEÇMİŞ	255

SİMGELER VE KISALTMALAR LİSTESİ

Ev	: Elektron volt
KeV	: Kiloelektron volt
MeV	: Megaelektron volt
ICRP	: Uluslararası Radyasyondan Korunma Komitesi
LINAC	: Lineer Hızlandırıcı
EAF	: Çelik Endüstrisinin Yan Ürünü
μ	: Lineer Azaltma Katsayısı
μ/ ho	: Kütle Azaltma Katsayısı
HPGe	: Yüksek Saflıkta Germanyum Dedektörü
YKD	: Yarı Kalınlık Değeri
OKD	: Onda_Bir Kalınlık Değeri
OSY	: Ortalama Serbest Yol
RKV	: Radyasyon Koruma Verimliliği
Zetk	: Etkin Atom Numarası
γ	: Gama
α	: Alfa
eta	: Beta
Ι	: Radyasyon Şiddeti
I ₀	: Başlangıç Radyasyon Şiddeti
Σ	: Tesir Kesiti
EMR	: Elektromanyetik Radyasyon
σt,a	: Toplam Atomik Soğurma Tesir Kesiti
σt,e	: Toplam Elektronik Soğurma Tesir Kesiti
σt,m	: Toplam Moleküler Soğurma Tesir Kesiti
\sum_{R}	: Hızlı Nötron Uzaklaştırma Tesir Kesiti

ŞEKİLLER LİSTESİ

Şekil 2.1.	Nükleer tıp uygulamaları için bir örnek	32
Şekil 2.2.	Radyasyon barındıran bazı endüstriyel kaynakların gösterimi	33
Şekil 2.3.	Radyasyon barındıran bazı nükleer yakıt çevrimi elemanlarının	
	gösterimi	33
Şekil 2.4.	İyonlaştırıcı ve iyonlaştırıcı olmayan radyasyonu gösteren	
	elektromanyetik spektrum	34
Şekil 2.5	Gama bozunması sürecine ilişkin bir örnek	35
Şekil 2.6	Radyasyon türüne göre uygulanabilen zırhlama	
	malzemeleri	49
Şekil 2.7.	Radyasyon maruziyetini etkileyen temel faktörler	49
Şekil 2.8.	Fotoelektrik, Compton ve Çift oluşumu olaylarının etkin olduğu	
	bölgeler	61
Şekil 2.9.	Fotoelektrik olayı sonucu karekteristik X-Işını oluşumu	62
Şekil 2.10.	Compton saçılmasının gösterimi	63
Şekil 2.11.	Çift oluşumu	65
Şekil 2.12.	Nötronun çekirdekten elastik saçılması	66
Şekil 2.13.	Nötronun inelastik saçılması	67
Şekil 2.14.	Nötronun yakalama	67
Şekil 2.15.	Nükleer fisyon reaksiyonuna bir örnek	68
Şekil 2.16.	Tesir kesitinin şematik gösterimi	69
Şekil 3.1.	FLUKA simülasyon programının kullanım aşamalarından bir	
	gösterim	85
Şekil 3.2.	FLUKA simülasyon programının kullanım aşamalarında parçacık/ışın	
	ve enerji tanımlanması	86
Şekil 3.3.	(a) Kür havuzuna alınan numuneler (b) Üretim aşamasında kullanılan	
	karıştırıcı (c) Mekanik testlerde kullanılan 5x5x5 cm ³ ölçüsündeki	
	kalıp örnekleri (d) Radyasyon deneylerinde kullanılan 1 cm kalınlığa	

	sahip silindirik kalıp örnekler	91
Şekil 3.4.	Mekanik deneyler için üretilen numune örnekleri	92
Şekil 3.5.	Radyasyon zırhlama ölçümleri için üretilen numunelerden	
	örnek	92
Şekil 3.6.	Deney geometrisi	93
Şekil 3.7	Deneylerde kullanılan basınç presi	95
Şekil 3.8.	Deneylerde kullanılan Posso ultra ses geçiş hızı cihazı	96
Şekil 3.9.	Deneylerde kullanılan Schmidt yüzey çekici cihazı	96
Şekil 4.1.	Bronz katkılanmış beton numunelerin elde edilen sonuçlara göre çizilmiş kütle azaltma katsayılarının enerjiye göre değişim	
	grafiği	105
Şekil 4.2.	Pirinç katkılanmış beton numunelerin elde edilen sonuçlara göre	
	çizilmiş kütle azaltma katsayılarının enerjiye göre değişim	106
Sekil 4 3	Paslanmaz celik katkılanmış beton numunelerin elde edilen sonuclara	100
Şeklî 4.3.	göre çizilmiş kütle azaltma katsayılarının enerjiye göre değişim	
	grafiği	107
Şekil 4.4.	%50 bronz ve farklı oranlarda B ₄ C katkılanmış beton numunelerin	
	ende editen sonuçiara gore çizinmiş kutle azatına katsaynarının	100
Salvil 4 5	% 50 piring va farklı granlarda P.C. katkılanmış haton numunalarin	108
ŞCKII 4 . <i>J</i> .	elde edilen sonuclara göre cizilmis kütle azaltma katsavılarının	
	eneriive göre değişim grafiği	109
Sekil 4 6	%50 paslanmaz celik ve farklı oranlarda B ₂ C katkılanmış beton	107
Şekii 4.0.	numunelerin elde edilen sonuclara göre cizilmis kütle azaltma	
	katsavılarının eneriiye göre değişim grafiği	110
Sekil 4 7	Bronz ile katkılanmış beton numunelerin lineer azaltma katşayışının	110
Şekir 1.7.	eneriive göre değişim grafiği	118
Sekil 4 8	Pirinc ile katkılanmış beton numunelerin lineer azaltma katsayısının	110
Şenii 7.0.	eneriive göre değişim grafiği	119
Sekil 4 9	Paslanmaz celik ile katkılanmış beton numunelerin lineer azaltma	11)
yenn 1.7.	katsavısının eneriiye göre değişim orafiği	120
	Raisa jishimi energiye gore degişimi grangı	140

Şekil 4.10.	%50 bronz ve farklı oranlarda B4C katkılanmış beton numunelerin	
	lineer azaltma katsayısının enerjiye göre değişim grafiği	121
Şekil 4.11.	%50 pirinç ve farklı oranlarda B4C katkılanmış beton numunelerin	
	lineer azaltma katsayısının enerjiye göre değişim grafiği	124
Şekil 4.12.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılanmış beton	
	numunelerin lineer azaltma katsayısının enerjiye göre değişim grafiği.	124
Şekil 4.13.	Bronz katkılanmış beton numunelerin YKD'lerinin enerjiye göre	
	değişim grafiği	131
Şekil 4.14.	Pirinç katkılanmış beton numunelerin YKD'lerinin enerjiye göre	
	değişim grafiği	132
Şekil 4.15.	Paslanmaz çelik katkılanmış beton numunelerin YKD'lerinin enerjiye	
	göre değişim grafiği	133
Şekil 4.16.	%50 bronz ve farklı oranlarda B4C katkılanmış beton numunelerin	
	YKD'lerinin enerjiye göre değişim grafiği	134
Şekil 4.17.	%50 pirinç ve farklı oranlarda B ₄ C ile katkılanmış beton numunelerin	
	YKD'lerinin enerjiye göre değişim grafiği	135
Şekil 4.18.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılanmış beton	
	numunelerin YKD'lerinin enerjiye göre değişim grafiği	136
Şekil 4.19.	Bronz katkılanmış beton numunelerin OKD'lerinin enerjiye göre	
	değişim grafiği	143
Şekil 4.20.	Pirinç katkılanmış beton numunelerin OKD'lerinin enerjiye göre	
	değişim grafiği	144
Şekil 4.21.	Paslanmaz katkılanmış beton numunelerin OKD'lerinin enerjiye göre	
	değişim grafiği	145
Şekil 4.22.	%50 bronz ve farklı oranlarda B ₄ C katkılanmış beton numunelerin	
	OKD'lerinin enerjiye göre değişim grafiği	146
Şekil 4.23.	%50 pirinç ve farklı oranlarda B4C katkılanmış beton numunelerin	
	OKD'lerinin enerjiye göre değişim grafiği	147
Şekil 4.24.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılanmış beton	
	numunelerin OKD'lerinin enerjiye göre değişim grafiği	148
Şekil 4.25.	Bronz katkılanmış beton numunelerin ortalama serbest yol	
	değerlerinin enerjiye göre değişim grafiği	155

Şekil 4.26.	Pirinç katkılanmış beton numunelerin ortalama serbest yol	
	değerlerinin enerjiye göre değişim grafiği	156
Şekil 4.27.	Paslanmaz çelik katkılanmış beton numunelerin ortalama serbest yol	
	değerlerinin enerjiye göre değişim grafiği	157
Şekil 4.28.	%50 bronz ve farklı oranlarda B4C katkılanmış beton numunelerin	
	ortalama serbest yol değerlerinin enerjiye göre değişim grafiği	158
Şekil 4.29.	%50 pirinç ve farklı oranlarda B4C ile katkılandırılmış beton	
	numunelerin ortalama serbest yol değerlerinin enerjiye göre değişim	
	grafiği	159
Şekil 4.30.	%50 paslanmaz çelik ve farklı oranlarda B4C ile katkılandırılmış	
	beton numunelerin ortalama serbest yol değerlerinin enerjiye göre	
	değişim grafiği	160
Şekil 4.31.	Bronz katkılanmış beton numunelerin etkin atom numarası	
	değerlerinin enerjiye göre değişim grafiği	168
Şekil 4.32.	Pirinç alaşımı ile katkılandırılmış beton numunelerin etkin atom	
	numarası katsayısının enerjiye göre değişim grafiği	169
Şekil 4.33.	Paslanmaz çelik alaşımı ile katkılandırılmış beton numunelerin etkin	
	atom numarası katsayısının enerjiye göre değişim grafiği	170
Şekil 4.34.	%50 bronz ve farklı oranlarda B ₄ C ile katkılanmış beton numunelerin	
	etkin atom numarası değerlerinin enerjiye göre değişim grafiği	171
Şekil 4.35.	%50 pirinç ve farklı oranlarda B ₄ C ile katkılanmış beton numunelerin	
	etkin atom numarası değerlerinin enerjiye göre değişim grafiği	172
Şekil 4.36.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılanmış beton	
	numunelerin etkin atom numarası değerlerinin enerjiye göre değişim	
	grafiği	173
Şekil 4.37.	Bronz katkılı beton numunelerin seçilen enerji değerlerindeki	
	radyasyon koruma verimliliklerinin enerjiye göre değişimi	177
Şekil 4.38.	Pirinç katkılı beton numunelerin seçilen enerji değerlerindeki	
	radyasyon koruma verimliliklerinin enerjiye göre değişimi	178
Şekil 4.39.	Paslanmaz çelik katkılı beton numunelerin seçilen enerji	
	değerlerindeki radyasyon koruma verimliliklerinin enerjiye göre	
	değişimi	178

Şekil 4.40.	%50 bronz ve farklı oranlarda B ₄ C katkılı beton numunelerin seçilen	
	göre değişimi	179
Şekil 4.41.	%50 pirinç ve farklı oranlarda B ₄ C katkılı beton numunelerin seçilen	
	enerji değerlerindeki radyasyon koruma verimliliklerinin enerjiye	
	göre değişimi	179
Şekil 4.42.	%50 paslanmaz çelik ve farklı oranlarda B ₄ C katkılı beton	
	numunelerin seçilen enerji değerlerindeki radyasyon koruma	
	verimliliklerinin enerjiye göre değişimi	180
Şekil 4.43.	%50 bronz ve farklı oranlarda B4C katkılı 1 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	181
Şekil 4.44.	%50 pirinç ve farklı oranlarda B4C katkılı 1 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	182
Şekil 4.45.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 1 cm	
	kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron	
	sayısı	183
Şekil 4.46.	%50 bronz ve farklı oranlarda B4C katkılı 2,5 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	185
Şekil 4.47.	%50 pirinç ve farklı oranlarda B4C katkılı 2,5 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	186
Şekil 4.48.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 2,5 cm	
	kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron	
	sayısı	186
Şekil 4.49.	%50 bronz ve farklı oranlarda B4C katkılı 5 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	188
Şekil 4.50.	%50 pirinç ve farklı oranlarda B4C katkılı 5 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	189
Şekil 4.51.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 5 cm	
	kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron	
	sayısı	189
Şekil 4.52.	%50 bronz ve farklı oranlarda B4C katkılı 7 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	191

%50 pirinç ve farklı oranlarda B ₄ C katkılı 7 cm kalınlığındaki beton	
numunelerden farklı enerjide geçen nötron sayısı	192
%50 paslanmaz çelik ve farklı oranlarda B ₄ C katkılı 7 cm	
kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron	
sayısı	192
%50 bronz ve farklı oranlarda B4C katkılı 10 cm kalınlığındaki beton	
numunelerden farklı enerjilerde geçen nötron sayısı	193
%50 pirinç ve farklı oranlarda B4C katkılı 10 cm kalınlığındaki beton	
numunelerden farklı enerjilerde geçen nötron sayısı	194
%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 10 cm	
kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron	
sayısı	195
%50 bronz ve farklı oranlarda B4C katkılı 13 cm kalınlığındaki beton	
numunelerden farklı enerjilerde geçen nötron sayılarının değişimi	197
%50 pirinç ve farklı oranlarda B4C katkılı 13 cm kalınlığındaki beton	
numunelerden farklı enerjilerde geçen nötron sayılarının değişimi	198
$\%50$ paslanmaz çelik ve farklı oranlarda B_4C katkılı 13 cm	
kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron	
sayısı değişimi	198
%50 bronz ve farklı oranlarda B4C katkılı 16 cm kalınlığındaki beton	
numunelerden farklı enerjilerde geçen nötron sayılarının değişimi	200
%50 pirinç ve farklı oranlarda B4C katkılı 16 cm kalınlığındaki beton	
numunelerden farklı enerjilerde geçen nötron sayılarının değişimi	201
%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 16 cm	
kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron	
sayılarının değişimi	201
%50 bronz ve farklı oranlarda B4C katkılı 20 cm kalınlığındaki beton	
numunelerden farklı enerjilerde geçen nötron sayılarının değişimi	203
%50 pirinç ve farklı oranlarda B4C katkılı 20 cm kalınlığındaki beton	
numunelerden farklı enerjilerde geçen nötron sayılarının değişimi	204
%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 20 cm	
kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron	
	 %50 pirinç ve farklı oranlarda B₄C katkılı 7 cm kalınlığındaki beton numunelerden farklı enerjide geçen nötron sayısı %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 7 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı %50 bronz ve farklı oranlarda B₄C katkılı 10 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı %50 pirinç ve farklı oranlarda B₄C katkılı 10 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı %50 pirinç ve farklı oranlarda B₄C katkılı 10 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 10 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı %50 bronz ve farklı oranlarda B₄C katkılı 13 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi %50 pirinç ve farklı oranlarda B₄C katkılı 13 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 13 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi %50 pornz ve farklı oranlarda B₄C katkılı 16 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi %50 pirinç ve farklı oranlarda B₄C katkılı 16 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi %50 pirinç ve farklı oranlarda B₄C katkılı 20 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi %50 bronz ve farklı oranlarda B₄C katkılı 20 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi %50 pirinç ve farklı oranlarda B₄C katkılı 20 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi <l< td=""></l<>

xi

	sayılarının değişimi	204
Şekil 4.67.	%50 bronz ve farklı oranlarda B4C katkılı 25 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayılarının değişimi	206
Şekil 4.68.	%50 pirinç ve farklı oranlarda B_4C katkılı 25 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayılarının değişimi	207
Şekil 4.69.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 25 cm	
	kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron	
	sayılarının değişimi	207
Şekil 4.70.	%50 bronz ve farklı oranlarda B4C katkılı beton numunelerin 1,1	
	MeV nötron enerjisinde farklı kalınlıklarda geçen nötron sayılarının	
	değişimi	208
Şekil 4.71.	%50 pirinç ve farklı oranlarda B4C katkılı beton numunelerin 1,1	
	MeV nötron enerjisinde farklı kalınlıklarda göre geçen nötron	
	sayılarının değişimi	208
Şekil 4.72.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı beton	
	numunelerin 1,1 MeV nötron enerjisinde farklı kalınlıklarda geçen	
	nötron sayılarının değişimi	209
Şekil 4.73.	%50 bronz ve farklı oranlarda B4C katkılı beton numunelerin 4,5	
	MeV nötron enerjisinde farklı kalınlıklarda geçen nötron sayılarının	
	değişimi	209
Şekil 4.74.	%50 pirinç ve farklı oranlarda B4C katkılı beton numunelerin 4,5	
	MeV nötron enerjisinde farklı kalınlıklarda geçen nötron sayılarının	
	değişimi	210
Şekil 4.75.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı beton	
	numunelerin 4,5 MeV nötron enerjisinde farklı kalınlıklarda geçen	
	nötron sayılarının değişimi	210
Şekil 4.76.	%50 bronz ve farklı oranlarda B ₄ C katkılı beton numunelerin 7 MeV	
	nötron enerjisinde farklı kalınlıklarda geçen nötron sayılarının	
	değişimi	211
Şekil 4.77.	%50 pirinç ve farklı oranlarda B ₄ C katkılı beton numunelerin 7 MeV	
	nötron enerjisinde farklı enerjilerde geçen nötron sayılarının	
	değişimi	211

%50 paslanmaz çelik ve farklı oranlarda B4C katkılı beton	
numunelerin 7 MeV nötron enerjisinde farklı kalınlıklarda geçen	
nötron sayılarının değişimi	212
%50 bronz ve farklı oranlarda B4C ile katkılanmış beton numunelerin	
hızlı nötron uzaklaştırma tesir kesitinin karşılaştırmalı	
grafiği	213
%50 pirinç ve farklı oranlarda B4C ile katkılanmış beton numunelerin	
hızlı nötron uzaklaştırma tesir kesitinin karşılaştırmalı grafiği	216
%50 paslanmaz çelik ve farklı oranlarda B4C ile katkılanmış beton	
numunelerin hızlı nötron uzaklaştırma tesir kesitinin karşılaştırmalı	
grafiği	226
Farklı oranlarda bronz katkılı numunelerin basınç dayanım grafiği	228
Farklı oranlarda pirinç katkılı numunelerin basınç dayanım grafiği	228
Farklı oranlarda paslanmaz çelik katkılı numunelerin basınç dayanım	
grafiği	229
Farklı oranlarda bronz katkılı numunelerin basınç dayanımının ultra	
ses geçiş hızı ve yüzey sertliğine karşı grafiği	229
Farklı oranlarda pirinç katkılı numunelerin basınç dayanımının ultra	
ses geçiş hızı ve yüzey sertliğine karşı grafiği	229
Farklı oranlarda paslanmaz çelik katkılı numunelerin basınç	
dayanımının ultra ses geçiş hızı ve yüzey sertliğine karşı	
grafiği	229
	 %50 paslanmaz çelik ve farklı oranlarda B4C katkılı beton numunelerin 7 MeV nötron enerjisinde farklı kalınlıklarda geçen nötron sayılarının değişimi

TABLOLAR LİSTESİ

	30
yoaktiviteleri	30
a yıllık etkin doz	31
	35
ılerin dalga boyuna, frekans ve	
	36
zellikleri	47
	59
ikli bazı malzemelerin avantaj ve	
	60
z + B4C katkılı beton numunelerin	
yüzde oranları ve numune	
	90
rinç alaşımı + B4C katkılı beton	
rin ağırlıkça yüzde oranları ve	
	91
r ile paslanmaz çelik + B4C katkılı	
ntlerin ağırlıkça yüzde oranları ve	
	92
muneler ile paslanmaz çelik + B4C	
eki elementlerin ağırlıkça yüzde	
	92
foton enerjileri	95
in deneysel, teorik, GEANT4 ve	
azaltma katsayısı (cm ² g ⁻¹)	
	99
rin deneysel, teorik, GEANT4 ve	
	yoaktiviteleri a yıllık etkin doz ılerin dalga boyuna, frekans ve ozellikleri ikli bazı malzemelerin avantaj ve z + B4C katkılı beton numunelerin yüzde oranları ve numune rinç alaşımı + B4C katkılı beton rin ağırlıkça yüzde oranları ve r ile paslanmaz çelik + B4C katkılı entlerin ağırlıkça yüzde oranları ve muneler ile paslanmaz çelik + B4C eki elementlerin ağırlıkça yüzde foton enerjileri in deneysel, teorik, GEANT4 ve azaltma katsayısı (cm ² g ⁻¹)

	FLUKA ile belirlenmiş kütle azaltma katsayısı (cm ² g ⁻¹)	
	değerleri	99
Tablo 4.3.	Paslanmaz çelik ile katkılanmış beton numunelerin deneysel, teorik,	
	GEANT4 ve FLUKA ile belirlenmiş karşılaştırmalı kütle azaltma katsayısı	
	(cm ² g ⁻¹) değerleri	102
Tablo 4.4.	%50 bronz ve farklı oranlarda B4C katkılanmış beton numunelerin	
	deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş karşılaştırmalı kütle	
	azaltma katsayısı (cm ² g ⁻¹) değerleri	103
Tablo 4.5.	%50 pirinç ve farklı oranlarda B4C katkılanmış beton numunelerin	
	deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş karşılaştırmalı kütle	
	azaltma katsayısı (cm ² g ⁻¹)	104
Tablo 4.6.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılanmış beton	
	numunelerin deneysel, teorik, GEANT4 ve FLUKA ile hesaplanmış	
	karşılaştırmalı kütle azaltma katsayısı (cm ² g ⁻¹) değerleri	105
Tablo 4.7.	Bronz ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve	
	FLUKA ile belirlenmiş lineer azaltma katsayısı (cm ⁻¹) değerleri 112Bronz	
	ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA	
	ile belirlenmiş lineer azaltma katsayısı (cm ⁻¹) değerleri	112
Tablo 4.8.	Pirinç ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve	
	FLUKA ile belirlenmiş karşılaştırmalı lineer azaltma katsayısı (cm ⁻¹)	
	değerleri	113
Tablo 4.9.	Paslanmaz çelik ile katkılanmış beton numunelerin deneysel, teorik,	
	GEANT4 ve FLUKA ile belirlenmiş karşılaştırmalı lineer azaltma	
	katsayısı (cm ⁻¹) değerleri	114
Tablo 4.10.	%50 bronz ve farklı oranlarda B4C katkılanmış beton numunelerin	
	deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş lineer azaltma	
	katsayısı (cm-1) değerleri	115
Tablo 4.11.	%50 pirinç ve farklı oranlarda B4C katkılanmış beton numunelerin	
	deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş lineer azaltma	
	katsayısı (cm ⁻¹) değerleri	116
Tablo 4.12.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılanmış beton	
	numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş lineer	

	azaltma katsayısı (cm ⁻¹)	117
Tablo 4.13.	Bronz katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve	
	FLUKA ile belirlenmiş YKD'leri (cm)	126
Tablo 4.14.	Pirinç katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve	
	FLUKA ile belirlenmiş karşılaştırmalı YKD'leri (cm)	127
Tablo 4.15.	Paslanmış çelik katkılanmış beton numunelerin deneysel, teorik, GEANT4	
	ve FLUKA ile belirlenmiş karşılaştırmalı YKD'leri (cm)	128
Tablo 4.16.	%50 bronz ve farklı oranlarda B4C katkılanmış beton numunelerin	
	deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş YKD'leri (cm)	129
Tablo 4.17.	%50 pirinç ve farklı oranlarda B4C katkılanmış beton numunelerin	
	deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş YKD'leri cm	130
Tablo 4.18.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılanmış beton	
	numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş	
	YKD'leri (cm)	131
Tablo 4.19.	Bronz ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve	
	FLUKA ile belirlenmiş OKD'leri (cm)	138
Tablo 4.20.	Pirinç alaşımı ile katkılanmış beton numunelerin deneysel, teorik,	
	GEANT4 ve FLUKA ile belirlenmiş OKD'leri (cm)	139
Tablo 4.21.	Paslanmaz çelik alaşımı ile katkılanmış beton numunelerin deneysel,	
	teorik, GEANT4 ve FLUKA ile belirlenmiş OKD'leri (cm)	140
Tablo 4.22.	%50 bronz ve farklı oranlarda B4C katkılanmış beton numunelerin	
	deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş OKD'leri	
	(cm)	141
Tablo 4.23.	%50 pirinç ve farklı oranlarda B4C katkılanmış beton numunelerin	
	deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş OKD'leri (cm)	142
Tablo 4.24.	%50 paslanmaz çelik ve farklı oranlarda B4C ile katkılandırılmış beton	
	numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş	
	OKD'leri (cm)	143
Tablo 4.25.	Bronz katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve	
	FLUKA ile belirlenen OSY değerleri (cm)	150
Tablo 4.26.	Pirinç katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve	
	FLUKA ile belirlenen OSY değerleri (cm)	151

Tablo 4.27.	Paslanmaz çelik katkılanmış beton numunelerin deneysel, teorik, GEANT4	154
Tablo 4.28.	%50 bronz farklı oranlarda B4C katkılanmış beton numunelerin deneysel,	134
	teorik, GEANT4 ve FLUKA ile belirlenen OSY değerleri	
	(cm)	154
Tablo 4.29.	%50 pirinç farklı oranlarda B4C katkılanmış beton numunelerin deneysel,	
	teorik, GEANT4 ve FLUKA ile belirlenen OSY değerleri	154
Tablo 4.30.	%50 paslanmaz çelik farklı oranlarda B4C katkılanmış beton numunelerin	
	deneysel, teorik, GEANT4 ve FLUKA ile belirlenen OSY değerleri	
	(cm)	155
Tablo 4.31.	Bronz katkılı beton numunelerin karşılaştırmalı Zetk	
	değerleri	156
Tablo 4.32.	Pirinç katkılı beton numunelerin karşılaştırmalı Zetk	
	değerleri	164
Tablo 4.33.	Paslanmaz çelik katkılı beton numunelerin karşılaştırmalı Zetk	
	değerleri	165
Tablo 4.34.	%50 bronz ve farklı oranlarda B4C katkılı beton numunelerin	
	karşılaştırmalı Zetk değerleri	166
Tablo 4.35.	%50 pirinç ve farklı oranlarda B4C katkılı beton numunelerin	
	karşılaştırmalı Zetk değerleri	167
Tablo 4.36.	%50 paslanmaz çelik alaşımı ve farklı oranlarda B4C katkılı beton	
	numunelerin karsılaştırmalı Zetk değerleri	168
Tablo 4.37.	Bronz katkılı beton numunelerin secilen enerji değerlerindeki radyasyon	
	koruma verimlilik değerleri (%)	175
Tablo 4.38.	Pirinc katkılı beton numunelerin secilen enerii değerlerindeki radvasyon	
1 uoio 7.30.	koruma verimliği (%)	176
Tablo 4.39.	Paslanmaz celik katkılı beton numunelerin secilen enerii değerlerindeki	
	radvasvon koruma verimliği (%)	176
Tablo 4 40	%50 bronz ve B4C katkılı beton numunelerin secilen enerii değerlerindeki	170
Tablo 4.40.	radvasvon koruma verimlilik değerleri (%)	177
	%50 niring ve B4C katkılı beton numunelerin segilen enerii değerlerindeki	1//
	radvasvon koruma verimlilik dečerleri (%)	177
		1//

Tablo 4.42.	%50 paslanmaz çelik ve B4C katkılı beton numunelerin seçilen enerji	
	değerlerindeki radyasyon koruma verimlilik değerleri (%)	178
Tablo 4.43.	%50 bronz ve farklı oranlarda B4C katkılı 1 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde göre geçen nötron sayısı	182
Tablo 4.44.	%50 pirinç ve farklı oranlarda B4C katkılı 1 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde göre geçen nötron sayısı	182
Tablo 4.45.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 1 cm kalınlığındaki	
	beton numunelerden farklı enerjilerde göre geçen nötron	
	sayısı	183
Tablo 4.46.	%50 bronz ve farklı oranlarda B4C katkılı 2,5 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	185
Tablo 4.47.	%50 pirinç ve farklı oranlarda B4C katkılı 2,5 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	185
Tablo 4.48.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 2,5 cm kalınlığındaki	
	beton numunelerden farklı enerjilerde geçen nötron sayısı	186
Tablo 4.49.	%50 bronz ve farklı oranlarda B4C katkılı 5 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	188
Tablo 4.50.	%50 pirinç ve farklı oranlarda B4C katkılı 5 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	188
Tablo 4.51.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 5 cm kalınlığındaki	
	beton numunelerden farklı enerjilerde geçen nötron sayısı	189
Tablo 4.52.	%50 bronz ve farklı oranlarda B4C katkılı 7 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	189
Tablo 4.53.	% 50 pirinç ve farklı oranlarda B4C katkılı 7 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	191
Tablo 4.54.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 7 cm kalınlığındaki	
	beton numunelerden farklı enerjilerde geçen nötron sayısı	192
Tablo 4.55.	%50 bronz ve farklı oranlarda B4C katkılı 10 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	194
Tablo 4.56.	%50 pirinç ve farklı oranlarda B4C katkılı 10 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	194
Tablo 4.57.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 10 cm kalınlığındaki	

	beton numunelerden farklı enerjilerde geçen nötron sayısı	195
Tablo 4.58.	%50 bronz ve farklı oranlarda B4C katkılı 13 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	197
Tablo 4.59.	%50 pirinç ve farklı oranlarda B4C katkılı 13 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	198
Tablo 4.60.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 13 cm kalınlığındaki	
	beton numunelerden farklı enerjilerde geçen nötron sayısı	198
Tablo 4.61.	%50 bronz ve farklı oranlarda B4C katkılı 16 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	200
Tablo 4.62.	%50 pirinç ve farklı oranlarda B4C katkılı 16 cm kalınlığındaki beton	
	numunelerden farklı eerjilerde geçen nötron sayısı	200
Tablo 4.63.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 16 cm kalınlığındaki	
	beton numunelerden farklı enerjilerde geçen nötron sayısı	201
Tablo 4.64.	%50 bronz ve farklı oranlarda B4C katkılı 20 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	203
Tablo 4.65.	%50 pirinç ve farklı oranlarda B4C katkılı 20 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	203
Tablo 4.66.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 20 cm kalınlığındaki	
	beton numunelerden farklı enerjilerde geçen nötron sayısı	204
Tablo 4.67.	%50 bronz ve farklı oranlarda B4C katkılı 25 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	206
Tablo 4.68.	%50 pirinç ve farklı oranlarda B4C katkılı 25 cm kalınlığındaki beton	
	numunelerden farklı enerjilerde geçen nötron sayısı	206
Tablo 4.69.	%50 paslanmaz çelik ve farklı oranlarda B4C katkılı 25 cm kalınlığındaki	
	beton numunelerden farklı enerjilerde geçen nötron sayısı	207
Tablo 4.70.	%50 bronz katkılı ve farklı oranlarda B4C katkılı beton numunelerin 4,5	
	MeV nötron enerjisi ve 1 cm kalınlık değerinde toplam makroskobik tesir	
	kesitleri ve OSY değerleri	214
Tablo 4.71.	%50 pirinç katkılı ve farklı oranlarda B4C katkılı beton numunelerin 4,5	
	MeV nötron enerjisi ve 1 cm kalınlık değerinde toplam makroskobik tesir	
	kesitleri ve OSY değerleri	214
Tablo 4.72.	%50 paslanmaz çelik katkılı ve farklı oranlarda B4C katkılı beton	

xix

- Tablo 4.73. %50 bronz ve farklı oranlar B4C katkısı yapılmış beton numunelerin içeriğindeki elementlerin hızlı nötron uzaklaştırma tesir kesiti ve numunenin toplam hızlı nötron uzaklaştırma tesir kesiti değeri (cm-1)..... 215 %50 pirinç ve farklı oranlar B4C katkısı yapılmış beton numunelerin Tablo 4.74. içeriğindeki elementlerin hızlı nötron uzaklaştırma tesir kesiti ve numunenin toplam hızlı nötron uzaklaştırma tesir kesiti değeri (cm-1)..... 215 %50 paslanmaz çelik ve farklı oranlar B4C katkısı yapılmış beton Tablo 4.75. numunelerin içeriğindeki elementlerin hızlı nötron uzaklaştırma tesir kesiti ve numunenin toplam hızlı nötron uzaklaştırma tesir kesiti değeri (cm-1)... 216

BETON NUMUNELERDE ALAŞIM TOZLARININ VE BOR KARBÜR KATKISININ İYONLAŞTIRICI RADYASYON ZIRHLAMA VE MEKANİK ÖZELLİKLERİNE ETKİSİ

ÖZET

Bu doktora çalışması ile, iyonlaştırıcı gama radyasyonu zayıflatmada kullanılmak üzere alaşımlarla güçlendirilmiş betonun, radyasyonu azaltma kabiliyetinin tespit edilmesi ve bu amaçla nükleer teknoloji uygulamalarında kullanılabilecek yeni bir beton türünün önerilmesi amaçlanmıştır. Alaşım olarak farklı oranlarda bronz, pirinç ve paslanmaz çelik veya bor karbür kullanılmıştır. Numunelerin radyasyon azaltma kabiliyetlerini tespit edebilmek için ²²Na, ⁶⁰Co, ¹³³Ba, ¹³⁷Cs ve ²⁴¹Am olmak üzere 5 farklı gama radyoizotop kaynağı kullanılmıştır. Radyoizotop kaynakları kullanılarak 11 farklı enerji değerinde gama radyasyonuna maruz bırakılan beton numunelerin deneysel, teorik ve simülasyon programlarından elde edilen veriler analiz edilmiş, bu veriler karşılaştırılmıştır. Teorik sonuçlar için WinXCOM bilgisayar programı, simülasyon sonuçları için GEANT4 ve FLUKA kodu kullanılmıştır.

Teorik sonuçlara göre gama radyasyona karşı en iyi sonucu veren beton numunelere farklı oranda bor karbür ilavesi yapılarak yine aynı 11 farklı enerji değerinde gama radyasyonu azaltma performansı belirlenmiştir. Yapılan çalışmalarda 7 farklı parametreye göre analizler yapılmıştır. Bu parametreler kütle azaltma katsayısı, lineer azaltma katsayısı, onda_bir kalınlık değeri, yarı kalınlık değeri, ortalama serbest yol, etkin atom numarası ve radyasyon koruma verimi parametreleridir. Bunun yanında tasarımı yapılan beton numunelerin mekanik özelliği olarak basınç dayanımı, ultra ses hızı ve yüzey sertliği incelenmiştir. Gama radyasyona karşı en iyi sonucu veren beton serisine farklı oranlarda bor karbür ilavesi yapılarak 7 farklı enerji değerinde ve 9 farklı kalınlıkta nötron radyasyonuna karşı davranışları GEANT4 ve FLUKA simülasyon kodları aracılığı ile belirlenmiştir. Bu kodlar kullanılarak zırh malzemesinden geçen nötron sayısı simüle edilmiştir.

Yapılan hesaplamalarda gama radyasyonu zırhlamada kullanılan beton numunelerin yoğunluğu artıkça iletilen radyasyonun azaldığı, simülasyonla elde edilen verilere göre, nötron radyasyonu zırhlamada ise kullanılan malzemenin yoğunluğu azaldıkça iletilen nötron sayısının azaldığı görülmüştür. Bu çalışmada kullanılan beton numunelerin radyasyonu azaltma değerleri incelendiğinde tasarımı yapılan betonun nükleer teknoloji uygulamalarında kullanılabileceği düşünülmektedir.

Anahtar Kelimeler: Radyasyon, zırhlama, gama radyasyonu, nötron radyasyonu, beton, GEANT4, FLUKA.

THE EFFECTS OF ALLOY POWDERS AND BORON CARBIDE ADDITIVE ON IONIZING RADIATION SHIELDING AND MECHANICAL PROPERTIES IN CONCRETE SAMPLES

ABSTRACT

In this study, it is aimed to determine the radiation attenuation ability of alloy reinforced concrete to be used to attenuate ionized gamma radiation and to propose a new type of concrete that can be used in nuclear technology applications for this purpose. Different proportions of bronze, brass and stainless steel were used as alloys. Of the designed concrete samples, 5x5x5 cm³ cube shaped ones were prepared for mechanical tests, and cylindrical samples with a diameter of 2 cm and a height of 1 cm were prepared for radiation tests. In order to determine the radiation attenuation capabilities of the samples, 5 different gamma radioisotope sources, ²²Na, ⁶⁰Co, ¹³³Ba, ¹³⁷Cs and ²⁴¹Am, were used. The data obtained from experimental, theoretical and simulation programs of concrete samples exposed to gamma radiation at 11 different energy values using radioisotope sources were analyzed and these data were compared. WiNXCOM computer program was used for theoretical results, GEANT4 and FLUKA were used for simulation results.

According to the theoretical results, the gamma radiation scavenging at the same 11 different energy values was analyzed by adding different amounts of boron carbide to the concrete samples that gave the best results against gamma radiation. In both cases, analyzes were made according to 7 different parameters. These parameters are mass attenuation coefficient, linear attenuation coefficient, one_tenth thickness value, half value thickness, mean free path and effective atomic number and radiation shielding efficiency parameters. In addition, compressive strength, ultra sound velocity and surface hardness were investigated as mechanical properties of concrete samples. By adding boron carbide at different rates to the concrete series, which gives the best results against gamma radiation, its behavior against neutron radiation at 7 different energy values and 9 different thicknesses was investigated by means of GEANT4 and FLUKA simulation codes. Using these codes, the number of neutrons passing through the attenaution material was simulated.

All the results were analyzed and graphics were obtained with the help of Origin 2018(demo) graphics program. In this case, it has been seen that the use of elements with low atomic numbers is beneficial in terms of attenuating neutron radiation. When the radiation attenuation values of the concrete samples used in this study are examined, it is thought that the designed concrete can be used in nuclear technology applications.

Keywords: Radiation, shielding, gamma radiation, neutron radiation, concrete, GEANT4, FLUKA.

1. GİRİŞ

Günümüzde gelişen teknoloji ile radyasyon hayatımızın hemen hemen her aşamasında yer almaktadır. Radyasyonun sadece insanları değil bütün canlı varlıkları etkileyen sağlık sorunlarına neden olması, radyasyondan korunmayı önemli hale getirmiştir. Radyasyondan korunmanın temel olarak üç yolu bulunmaktadır. Bunlar radyasyon kaynağına olan uzaklık, radyasyon kaynağı ile geçirilen zaman ve radyasyon zırhlamadır.

Bu tez çalışması ile radyasyon zırhlamada etkin olarak kullanılabilecek malzeme önerilmesi amaçlanmaktadır. Nükleer teknoloji bünyesinde radyasyon zırhlamada kullanılabilecek olan malzemelerin üretilmesi, tasarımı ve geliştirilmesi hedefi olan birçok sayıda araştırma yapılmış ve halen bu alandaki çalışmalarda devam etmektedir. Günümüze kadar yapılan çalışmalar dikkate alındığında radyasyon zırhlamada etkin malzemelerin geliştirilmesi mümkün görünmektedir.

Literatüre bakıldığında çeşitli malzemelerin radyasyon zırhlamadaki etkinliğinin analiz edildiği, yapılan bu analizler sonucunda lineer azaltma katsayısı, kütle azaltma katsayısı, etkin atom numarası, etkin elektron yoğunluğu, radyasyon koruma verimi gibi radyasyon zırhlama parametrelerinin tercih edildiği görülmektedir. Bu malzemeler içinde de en çok tercih edilenler farklı materyallerle katkılandırılmış cam ve betonlardır. Radyasyon zırhlamada kullanılan kurşunun hem sağlık açısından tehlikeli olması hem de ciddi ağırlığının olması ya da kullanılan betonun radyasyonu önlemek için çok kalın seçilmesi ve maliyetinin artması gibi etkenler bu alanda bilim dünyasını sürekli arayışa sevk etmektedir.

Bu çalışmada alaşım veya bor karbür ilaveli beton numuneler hazırlanarak, iyonlaştırıcı radyasyon ve mekanik özellikleri açısından test edilmiştir. Yapılan bu doktora çalışması sonucunda radyasyondan koruyabilen veya etkisini minimuma indirgeyen alaşım katkılı veya bor karbür ilaveli betonların önerilmesi hedeflenmiştir.

Günümüzde nükleer teknolojik uygulamalarının artması, insan yaşamını kolaylaştırmaktadır. Ancak bu teknolojik uygulamalar birçok faydası yanında önemsenmesi gereken sorunlara da neden olmuştur. Şu anda teknolojik olarak dünyada gelinen noktada, hayatımızdaki radyasyon riskini göz ardı etmeyen ancak radyasyon tehlikesini de en aza indirecek radyasyondan korunma önlemlerini almamız zorunlu hale gelmiştir (Akkurt vd. 2011).

Radyasyonun zararlı etkilerinden korunmada, radyasyon kaynağına olan uzaklık (mesafe), radyasyon kaynağı ile birlikte geçirilen zaman (süre) ve zırhlama olmak üzere üç parametreye dikkat edilmektedir. Radyasyona neden olan kaynaktan mümkün olabildiğince uzak mesafede kalarak ve kaynağın yakın çevresinde bulunma süresini minumuma indirerek radyasyonun olumsuz etkileri azaltılabilir. Bu basit sayılabilecek tedbirlere rağmen maruz kalınan radyasyonun miktarı yeterince azalmadığında ise zırhlamaya ihtiyaç duyulmaktadır. Yapılacak olan zırhlama radyasyon kaynağının ve kaynağın yer aldığı alana göre değişkenlik gösteren bir materyal olabilmektedir. Zırhlama ile radyasyona neden olan ışımayı minumuma düşürerek maruz kalınan doz seviyesini Uluslararası Radyasyondan Korunma Komitesi'nin (ICRP) önerdiği radyasyon dozu seviyelerine indirilebilir.

Günümüzde çok fazla kullanılan eski tip radyasyon zırhlama materyallerinin azımsanmayacak ölçüdeki zırhlama yetenekleri ile istenmeyen bazı olumsuzlukları bulunmaktadır. Örneğin kurşun insan sağlığı açısından tehlike oluşturabilecek toksik özelliğe sahiptir. Ayrıca bulunduğu çevreye ciddi zarar verebilmektedir. Buna benzer dezavantajlardan dolayı zırhlamada, radyasyon azaltma performansı yüksek ve çevreye çok fazla zarar vermeyen malzeme kullanımı tercih edilir. Nükleer tekonolojide önemli bir yer teşkil eden zırhlama malzemelerinin farkına varılması, tasarlanması, üretimi ve kullanılması radyasyon zırhlamaya duyulan ilgiyi önemli hale getirmiş ve bilim dünyası konuya ilişkin çalışmalara daha fazla eğilim göstermiştir. Radyasyon zırhlamada tercih edilen malzemenin, maruz kalınan radyasyon doz miktarını azaltma özelliği (radyasyon tutuculuğu) ile beraber sahip olması gereken başka parametreler de bulunmaktadır.

Zırhlama için belirlenen malzemenin ekonomik yönden avantajlı olması, korezyon ve kimyasal etkileşmelere karşı direnç gösterebilmesi, hafif olması, iyi ısıl iletkenik ve

mekanik özellikler zırhlama seçiminde kullanılacak olan malzemenin sahip olması gereken önemli özelliklerdendir (Porokhorenko, 2015). Radyasyonun zırhlama materyali ile etkileşmesinin detaylı olarak analiz edilmesi, zırhlama için tercih edilecek materyalin belirlenmesi aşamasında yol gösterici olabilmektedir. Sonuç olarak nükleer teknoloji uygulamalarında radyasyonun neden olabileceği olumsuzlukları minumuma indirgemek için farklı hedeflere hizmet edebilecek materyallerin içeriklerinin araştırılması, geliştirilmesi de zırh malzemesinin tespit edilmesi açısından önemli bir husustur (Shultis, 2000).

Radyasyona neden olabilecek nükleer teknoloji uygulamalarında yaşanan hızlı gelişmeler dikkate alındığında radyasyondan koruma performansı son derece iyi olan kurşun (Pb) elementi gibi ağır malzemelerin yerini alabilecek yeni zırh malzemeleri tasarlamak, üretmek veya önermek ana hedef olmuştur. Her ne kadar da iyonlaştırıcı radyasyondan korunmak için kurşun (Pb) veya kurşun içerikli malzemeler çok fazla kullanılsa da bu element insan sağlığını olumsuz etkilediği bilinmektedir. Örneğin, kurşun elementi vücutta kanserojen madde birikmesine, ciddi hastalıklara, zehirlenmelere, organ hasarına, genetik bozukluklara neden olabilmektedir. Sayılan bu sağlık sorunları da insan ve çevre sağlığı üzerinde yüzyıllar boyunca etki edebilmektedir.

Kurşun elementinin bu tür etkilerinden dolayı, radyasyon zırhlamaya alternatif olması için, bu çalışmada pirinç tozu, bronz veya paslanmaz çelik ilave edilerek üretilen beton numunelerinin iyonlaştırıcı radyasyon zırhlama özellikleri hem deneysel ve teorik hesaplamalarda kullanılan GEANT4 ve FLUKA simülasyon kodları kullanılarak araştırılması ve yeni bir zırh malzemesi olarak kullanılabilecek bir beton türünün literatüre kazandırılması amaçlanmıştır.

Normal şartlarda malzemenin radyasyon sızdırmazlığı ana hedef olarak hedeflenirken, normal olmayan durumlarda ise bu özelliklerinin yanında zırhlama için kullanılan materyallerin deformasyonlara karşı direnci, iyi korozyon direnci ve ısıl özellikleri dikkate alınmaktadır. Son yıllarda meydana gelen Çernobil ve Fukuşima gibi bazı nükleer kazalar normal olmayan koşullar için zırhlama malzemelerinin sahip olduğu özelliklerin geliştirilmesini zorunlu kılmaktadır (Oray, 2007). Sonuç olarak zırhlamada kullanılacak olan materyalerin fiziksel ve kimyasal radyasyon önleyici özelliklerinin birlikte geliştirilmesi son derece önemlidir. Malzemeler oluşturulurken içerdikleri element, bileşik veya alaşımların oranları, tane boyutları, fiziksel ve kimyasal özellikleri gibi parametreler üzerinde durulması gereken temel parametreler arasında yer almaktadır. Bu amaçla üretilen beton numunelerinin basınç dayanımı, ultra ses geçiş hızı ve yoğunluk gibi özellikleri de incelenmiştir.

İçerisinde birden fazla elementi barındıran materyallerin (bileşik, alaşım vb.) radyasyon azaltma parametrelerinin ölçülmesi veya hesaplanması astrofizikte, nükleer fizikte, nükleer silah yapımında, nükleer reaktörlerde, katı hal fiziğinde, sağlık fiziği uygulamalarında, yeraltı çalışmalarında, plazma fiziğinde, dozimetri ve daha sayılamayan nükleer teknoloji içerikli radyasyon uygulamalarında önemli bir yer teşkil etmektedir.

Literatürde radyasyona neden olan uygulamalarda zırhlama amacı ile malzemelerin üretilmesi, tasarımı ve geliştirilmesi hedefli olan birçok sayıda çalışma yapılmış ve halen bu alandaki çalışmalar da devam etmektedir. Yapılan bu çalışmaların irdelenmesi ve analizi ile elde edilebilecek bilgi ve yorumların katkısıyla ileri teknoloji ürünü olarak sayılan malzemelerin tasarımı mümkün olacaktır. Literatüre bakıldığında çeşitli malzemelerin radyasyon zırhlamadaki etkinliğinin analiz edildiği ve önemli zırhlama parametrelerinin hesaplanabildiği farklı türde birçok araştırma görülmektedir. Bu malzemeler içinde en çok tercih edilenler maliyetleri ve kullanım alanı nedeni ile farklı materyallerle katkılandırılmış cam ve betonlardır.

Literatürdeki mevcut bazı çalışmaları sıralarsak;

Demir ve Keleş (2006) 59,5 ve 81 keV enerjili gama ışınlarına maruz kalan bor katkılı betonların radyasyonu azaltma kabiliyetini incelemişlerdir. Yaptıkları deneysel çalışmalar neticesinde inceledikleri atık bor katkılı betonların iki farklı gama radyasyonun kütle azaltma parametresini hesaplamışlardır. Elde ettikleri veriler sonucunda betonlara atık bor türevli malzemelerin kütle azaltma katsayısını zırhlama açısından pozitif yönde etkilediğini belirtmişlerdir.

Demir (2008) agregalı betonların X- ışını, gama ışını ve nötron radyasyonu azaltma aktivitesini değerlendirmiştir. Katıhal dedektörü, sintilasyon sayacı, iyon odası, He nötron dedektörü ve doğrusal hızlandırıcıdan (LINAC) yararlanarak deneylerini yapmıştır.

Yaptığı bu çalışmanın sonucunda içerisinde barit muhteva eden betonların fotonlar için, içerisinde kolemanit içeren betonların ise nötronlar için daha uygun zırh malzemesi olduğunu tespit etmiştir.

Kharita vd. (2008) tarafından yapılan araştırmada Suriye'de hali hazırda tercih edilen 2 tür beton ile kendi tasarımları olan 4 tür beton olmak üzere 6 tür birbirinden değişik beton numunesinin radyasyona maruz bırakılması durumunda kendi üretimleri olan betonun radyasyona karşı zırh malzemesi olarak daha iyi sonuçlar verdiğini ifade etmişlerdir.

Mortazavi vd. (2010) çalışmalarında kolemanit ve galena katkısı yapılmış ağır beton (CoGa) tasarlamışlardır. Tasarladıkları bu betonun zırhlama malzemesi olarak kullanımını sıradan beton ile kıyaslamışlardır. Yapmış oldukları araştırmalarda radyasyon kaynağı olarak Co-60 gama ve Am-Be nötron kaynaklarını tercih etmişlerdir. CoGa katkısı yapılmış betonun sıradan betonla karşılaştırdıklarında yarı kalınlık değerinin 3,51 cm sıradan betondan daha iyi sonuç verdiğini ifade etmişlerdir. Ayrıca tasarımı yapılan betonun nötron radyasyona karşı sıradan betona göre % 10 oranında daha iyi bir zırhlama malzeme olduğunu beyan etmişlerdir.

Kharita vd. (2011) tarafından yapılan başka bir araştırmada borik asit, borik frit ve boraksı birbirinden farklı olan 2 çeşit betona katkı maddesi olarak eklemişlerdir. Çalışmada bu numunelerin radyasyon zırh malzemesi olarak kullanılabilirliğini ve yapılan ilavelerin zırhlamaya katkısını değerlendirmişlerdir. Buldukları sonuçlara göre borik asit ve borik frit katkısının çimentonun içeriğini kötü etkilediğini, ancak boraks katkısının betonun içeriğini olumsuz etkilemediğini ve gama radyasyonu zırhlama parametrelerini % 80'e varan oranda iyileştirdiğini ifade etmişlerdir.

Limkitjaroenporn vd. (2011), kurşun oksit-sodyum oksit-bor trioksit [(80x)B₂O₃:xPbO:20Na₂O]'ten oluşan cam malzemelerini farklı molar oranlarda üreterek gama radyasyon zırhlama özelliklerini incelemişlerdir. Deneysel çalışmalarda 662 keV enerjiye sahip fotonlar kullanmışlardır. Elde ettikleri verileri ise aynı kalınlıktaki standart beton verileri ile kıyaslamışlardır. Sonuçta standart betondan daha üstün sonuçlar elde edildiğini belirtmişlerdir. Oto ve Gür (2013) tarafından yapılan başka bir araştırmada manyetit cevheri miktarının beton numunelerinin gama radyasyonunda koruma verimi üzerindeki etkisini NaI(TI) dedektörü yardımı ile değerlendirmişlerdir. Sonuçta beton numunelerde manyetit oranının artırılması ile lineer azaltma katsayısında artış olduğunu ifade etmişlerdir.

Wang vd. (2014) kayaç yapılarda bulunan peridotitin betona ilave edilmesinin nötron zırhlama üzerine değişkenliğini değerlendirmişlerdir. Yapılan çalışmaya göre betona peridotit eklenmesinin betonun nötron zırhlama kabiliyetini olumlu yönde geliştirdiğini rapor etmişlerdir.

Singh vd. (2015) betona değişik oranlarda kurşun-uçucu kül katkısı yapılmasının etkilerini analiz etmişlerdir. %0, %20, %30, %40, %50 ve %60 katkı maddesi içeren 6 çeşit farklı beton tasarlamışlardır. 662 keV, 1173 keV ve 1332 keV enerjilerinde foton kullanarak deneysel ve teorik olarak zırhlama parametreleri analiz etmişlerdir. Yapılan araştıma neticesinde uçucu kül içeren betonlara kıyasla içinde kurşun-uçucu kül barındıran betonların zırhlama kabiliyetlerinin daha verimli olduğunu belirtmişlerdir.

Ipbüker vd. (2015) yaptıkları bir çalışmada önerdikleri çimento-bazalt karışımının radyasyon koruma özelliklerini incelemişlerdir. Yapılan çalışmada, WinXCom programı aracılığıyla gama radyasyonu zırhlama parametreleri Monte Carlo Serpernt kodu ile de nötron azaltma parametrelerinin hesaplanmaları yer almaktadır. Sunulan sonuçlar, bazalt lifi katkılı betonun nükleer enerji uygulamalarında ve nükleer atık yönetiminde kullanım için iyi bir potansiyele sahip olduğunu göstermektedir.

Park vd. (2014) tarafından yaptıkları araştırmada ise, içerisinde bor ve polietilen barındıran materyalin nötron zırhlama kabiliyetini, MCNP-5 simülasyon kodu kullanılarak teorik olarak hesaplamışlardır. Elde edilen sonuçlara göre içerisinde bor barındıran betona polietilen eklenmesi nötron zırhlama etkisini arttırdığını gözlemlemişlerdir.

Yaltay vd. (2015) tarafından yapılan başka bir araştırmada pomza agregası ve kolemanit ilave edilmesi ile tasarlanan değişken miktarlardaki ağır olmayan betonun radyasyon koruma kapasitelerini ve tasarlanan malzemenin kür süresinin radyasyon koruma üzerindeki etkisini ⁶⁰Co radyoaktif kaynağını kullanarak analiz etmişlerdir. Ağır olmayan betona kolemanit eklenmesi ile betonun radyasyon koruma özelliklerinde artış olduğunu ancak ağır olmayan betonda kolemanit oranının değiştirilmesinin radyasyon azaltma özellikleri ile kür süresi arasında bilinen bir ilişki olmadığını ifade etmişlerdir.

Waly ve Bourham (2015) tarafından yapılan araştırmada farklı oranlarda Fe₃O₄ (magnetit) ve PbO (kurşun oksit) eklenmesi ile beton oluşturulduğu zaman, sıradan betona göre gama radyasyonundan koruma performanslarında ciddi bir artış olduğunu ifade etmişlerdir. 0,015 - 1,5 MeV enerji aralığında foton enerjilerinde deneysel araştırmalar yapmışlardır. Araştırmaya göre en üstün zırhlama yeteneğine sahip betonun %39,195 magnetit ve %15,678 kurşun oksit ilavesi ile elde edilen betonda görüldüğünü ifade etmişlerdir.

Tekin vd. (2018) tarafından yapılan bir çalışmada mikro ve nano boyutlardaki WO₃ ve Bi₂O₃ katkısının hematit serpantin ilaveli betonunun radyasyon zırhlama performansı üzerine katkısını analiz etmişlerdir. Bu hedefle hem mikro hem de nano ölçeklerde WO₃ ve Bi₂O₃ ile karıştırılmış hematit serpantin katkılı betonun kütle azaltma katsayısını, MCNPX kodu yardımı ile 0,142-1,33 MeV foton enerji aralığında analiz etmişlerdir. Elde edilen sonuçlara göre, nanopartiküllerin sahip olduğu lineer azaltma katsayısı sonuçlarının seçilen tüm enerji değerlerinde mikro partiküllerden daha üstün olduğunu beyan etmişlerdir.

Kaya (2019) yaptığı bir çalışmasında sıradan beton ve özel teknikle tasarlanan hafif, ağır ve çelik lifli katkılı betonların radyasyonu azaltma kabiliyetlerini ⁶⁰Co ve ¹³⁷Cs gama radyasyon kaynakları yardımı ile incelemiştir. Birbirinden farklı kalınlıktaki beton numunelerinin radyasyon azaltma katsayılarını ve yarı kalınlık değerlerini hesaplamıştır. Neticede elde edilen bu sonuçların kullanılan malzemelerin yoğunluk ve kimyasal özellikleri ile yakın ilişki içinde olduğunu rapor etmiştir.

Singh *vd.* (2008) radyasyon zırhlama malzemesi olarak baryum borat uçucu kül camların farklı enerjilerde kütle azaltma katsayılarını hesaplamışlar ve elde ettikleri sonuçları sıradan beton malzemelerin kütle azaltma katsayılarıyla karşılaştırmışlardır. Elde edilen

sonuçlara göre, baryum-borat-uçucu kül camlarının zırhlama açısından, sıradan betonlara göre gama radyasyonlarına karşı daha iyi zırhlama malzemesi olduğunu rapor etmişlerdir. Kaewjaeng vd. (2012) SiO₂-B₂O₃-Al₂O₃-CaO-Na₂O katkılı cam yapıdaki malzemenin içeriğinde bulunan BaO bileşiğinin gama radyasyon zırhlamaya etkisini analiz etmişlerdir. Tasarlanan camlar içerisinde bulunan malzemeyi (50 x)SiO₂:15B₂O₃:2Al₂O₃:10CaO:23Na₂O: xBaO, x = 0, 5, 10, 15 ve 20 % mol oranlarında olacak şekilde üretmişlerdir. Sonuçta BaO bileşiğinin artırılması ile üretilen malzemenin gama radyasyonuna karşı zırhlama performansının arttığını ispatlamışlardır. Üretilen cam numunelerin betonla kıyaslaması yapılmış ve aynı ölçülerde kullanıldığında daha üstün bir zırhlama malzemesi olduğunu ifade etmişlerdir.

Akıllı (2019) yaptığı tez çalışmasında Bi₂O₃-PbCl₂-TeO₂ sisteminin optik, ısıl, fiziksel ve yapısal karakteristiklerini analiz etmiştir. Üretilen camların radyasyon zırhlama performanslarını da incelemiştir. Ayrıca, elde edilen camların betonla ve mevcut diğer camlarla radyasyon zırhlama yönünden karşılaştırmasını yaparak, elde edilen camların zırh malzemesi olarak yüksek kullanım potansiyeline sahip olabileceğini göstermiştir.

Singh *vd.* (2014) tarafından yapılan bir çalışmada silikat ve borat ağır metal oksit katkılı camların radyasyon zırhlama yeteneklerini araştırmışlardır. Sonuçta bu şekilde katkılanan camların % 40 oranında daha iyi performans gösterdiğini ifade etmişlerdir.

Calzada vd. (2011) yaptıkları çalışmada nötron ve gama zırhlamasında kullanılabilecek bir malzeme önermişlerdir. Fe-B₄C-PE (demir-bor karbür-polietilen) karıştırarak elde ettikleri malzemelerin nötron radyasyonuna karşı zırhlama performansının ağır betonun zırhlama performansına göre değerlendirmiş ve sonuçları Monte Carlo (MNCP) yardımı ile buldukları teorik sonuçlar ile karşılaştırmışlardır. Tasarlanan malzemenin ağır betona göre %10 ile %20 arasında değişen oranda nötron zırhlama açısından daha iyi sonuçlar sağladığını belirtmişlerdir.

Hanafinvedik vd. (2011) yaptıkları çalışmada bor fiber malzemelerin nötron radyasyonunu azaltma özelliklerini araştırmışlardır. Yapılan çalışmada epoksininde kullanıldığı 15 farklı içerikli malzemenin özelliklerini açıklayarak nötron radyasyonu karşısındaki zırhlama performanslarını incelemişlerdir. Elde edilen sonuçlara göre fiber borun nötron radyasyonu önlemede oldukça faydalı bir malzeme olduğunu göstermiştir. Kaloshkin vd. (2012), polimer-matris yapılı nano parçacık teknolojisi ile üretilmiş kompozit yapıdaki malzemenin içerisine B₄C ve W nano parçacıklar ilave etmişlerdir. Bunun sonucunda kompozit olarak dizayn edilen malzemenin gama radyasyonunu azaltma performansını, malzemenin içeriğindeki tungsten (W) oranın artması ile belli bir yere kadar doğru orantılı olarak arttığını belirtmişlerdir. Yapılan çalışmaya göre en iyi performansın kompozit yapıdaki malzemeye %60 W ilave edilerek elde edildiğini ifade etmişlerdir.

Büyük (2013) yaptığı bir araştırmada tungsten, titanyum ve bor içeren karma yapıdaki materyallerin gama ve nötron radyasyonu azaltma performansını incelemek için kütle azaltma katsayıları, yarı-değer kalınlık değeri ve onda bir değer kalınlık değerini analiz etmiştir. Elde edilen sonuçlara göre bor içeren karma yapıların nötron zırhlamada etkin olabileceğini, tungsten ve titanyum içerikli malzemelerin ise gama radyasyon zırhlamada daha etkin olabileceğini ifade etmiştir.

Lee vd. (2014), B₄C–PbO–Al(OH)₃ nanokompozit yapıdaki malzemenin nötron ve gama radyasyonuna karşı zırhlama yeteneğini analiz etmişlerdir. Malzemedeki B₄C ve PbO miktarlarının değişimine karşı lineer azaltma katsayılarını hesaplamışlardır. Araştırma sonucunda B₄C oranının artışı ile nötron zırhlama yeteğininde artış olduğunu, PbO oranı artması ile gama radyasyonu zırhlama performansınında artış olduğunu ifade etmişlerdir. Shin vd. (2014) polietilen/bor karışımı içeren kompozit yapıdaki malzemenin radyasyon azaltma performanslarını incelemişlerdir. Elde edilen sonuçlara göre polietilen/bor karışımının etkili termal iletim sağladığını ve nötron zırhlama performasının yüksek olduğunu rapor etmişlerdir.

Chang vd. (2015) içerisinde değişen oranlarda tungsten barındıran tungsten/epoksi kompozit yapıdaki malzemeyi hazırlamışlar ve Co-60 radyoaktif kaynak yardımı ile malzemelerin radyasyon zırhlama yeteneklerini analiz etmişlerdir. Deneysel olarak yapılan çalışma sonunda, üretilen kompozit malzeme içindeki tungsten oranındaki artışın radyasyon zırhlama özelliğini arttırdığını ifade etmişlerdir.

Belgin vd. (2015) yeni bir radyasyondan korunma malzemesi olarak ana materyali polyester olan hematit içerikli kompozitlerin radyasyon azaltma katsayılarını incelemişlerdir. Kompozit yapıdaki malzemelerin kütle azaltma katsayılarının kurşunun kütle azaltma katsayılarının %98'ine karşılık geldiğini bulmuşlardır. Ayrıca üretilen malzemenin toksik olmaması nedeni ile kurşundan üstün olduğunu beyan etmişlerdir.

Korkut (2010) üç farklı bor türü içeren cevher (kolemanit, üleksit ve tinkal) ile içinde bor barındıran beş farklı bileşiğin (MgB₂, NaBH₄, KBH₄, B₂O₃ ve H₃BO₃) nötron radyasyonunu zırhlama verilerini incelemiştir. Malzemelerin içerisinde bulunan bor ve hidrojen miktarlarının, malzemelerin radyasyona karşı zırhlama kabiliyetini nasıl değiştirdiğini incelemiştir. Bunun sonucunda içerisinde bor ve hidrojen bulunan malzemenin nötron zırhlama kabiliyetini artırdığını göstermişlerdir.

Singh ve Badiger (2014), bazı metallerin biraraya getirilmesi ile meydana gelmiş alaşımların gama ve nötron radyasyonuna karşı zırhlama performanslarını analiz etmişlerdir. Ürettikleri bakır-nikel alaşımının (%2 Mn, %2 Fe, %30 Ni ve %66 Cu) üstün gama radyasyon zırhlama kabiliyetine ve SS-316 adını verdikleri diğer bir alaşımında (%67,70 Si, %18 Cr, %12 Ni ve %2,3 Mo) 2 ile 12 MeV arasında değişen enerjilerde performansı son derece iyi olan nötron zırhlama kabiliyetine sahip olduğunu ispatlamışlardır.

Oto *vd.* (2015) barit, manyetit, limonit, hematit ve serpantin cevherlerinin kütle azaltma katsayılarını farklı foton enerjileri için değerlendirmiş ve kullanılan enerjilerde bu cevherlerin etkin atom numaralarını ve elektron yoğunluklarını da hesaplamışlardır. Yapılan çalışmada elde edilen sonuçlara göre barit cevherlerinin çalışılan diğer cevherlere göre zırhlama performansı bakımından daha üstün olduğunu rapor etmişlerdir.

Sayyed *vd.* (2017) tellür oksitin ana bileşen olduğu camların gama ışınından koruma kabiliyetini incelemişlerdir. Bu çalışmada yığılma faktörü üzerinde radyoaktif kaynağın sahip olduğu foton enerjisinin ve ortalama serbest yolun etken olduğunu ifade etmişlerdir. Elde edilen veriler ışığında, bu tür camların radyasyon zırhlamada etkin olduğunu ifade etmişlerdir.

Kurudirek (2017), yaptığı bir çalışmada ağır metal oksit borat (HMOB) camlarının gama, hızlı nötron ve yüklü parçacık etkileşimi için kütle azaltma katsayılarının, etkin atom numaralarının ve hızlı nötron uzaklaştırma tesir kesitlerinin deneysel değerlerini MCNPX simülasyon kodunu kullanarak doğrulamıştır. Sonuçta üretilen cam sistemlerin, standart beton ve hematit-serpantin katkılı betonlarından daha üstün zırhlama yeteneklerine sahip olduğunu beyan etmiştir.

Hatipoğlu (2017), Kırklareli mermeri, kalker tozu ve alüminyum numunelerinin gama azaltma katsayılarını Cs-137 ve Co-60 radyoaktif kaynaklardan yayımlanan enerjilerde belirlemiştir. Çalışmanın sonunda Kırklareli mermerinin ve basınç uygulanmış kalker tozunun lineer ve kütle azaltma katsayıları, yarı-kalınlık değeri (YKD) ve ondabir-kalınlık (OKD) değerlerinin malzemeye bağlı olarak değişebileciğini ifade etmişlerdir.

Levet vd. (2020) Fe-B kullanılarak üretilen alaşımların gama azaltma performansını değerlendirmişlerdir. Deneysel olarak gerçekleştirilen çalışmada kütle azaltma katsayılarını 0,0532-0,7785 MeV aralığındaki foton enerjilerinde hesaplamıştır. Sonuçta bu tür bir alaşımın radyasyon zırhlamada etkili olabileceğini söylemişlerdir.

Mhamdi (2010) ve Hayouni (2014) tarafından yapılan araştırmalarda, barit, selestin ve galen gibi ağır minerallerin özellikle gama radyasyonu zayıflatılmasında beton yapımında kullanılan çimento harçlarına ilave edildiğinde radyasyon zırhlama karekteristiklerinin olumlu yönde etkilendiklerini söylemişlerdir.

Saidani vd. (2015), Hammam Zriba'dan (Kuzey-Doğu Tunus) beton yapımında kumun kısmi ikamesi olarak barit kullanımının beton şişmesini etkilemediğini, ancak mekanik direnci ve büzülmeyi azalttığını bildirmişlerdir. Burada sunulan çalışma, maden atıklarının dahil edilmesinin gama ışınlarının azaltılması üzerindeki etkisini ve bu tür maden atıkları ile harmanlanmış harcın mekanik mukavemetini araştırmaktadır. Elde edilen sonuçlara göre betona kısmi olarak kum yerine barit eklenmesinin radyasyonu azalttığını rapor etmişlerdir.

Nükleer radyasyondan koruma uygulamaları için çeşitli kurşun (Pb) bazlı camlar ticari olarak mevcut olsa da; Son zamanlarda, Pb'nin insan sağlığı, canlı organizmaların ve

çevrenin refahı üzerindeki toksik etkileri hakkında büyük bir endişe olduğu gösterilmiştir. Bu nedenle, literatürde radyasyon için borat, borosilikat, tellürit, boro-tellürit ve borattellürit-silikat camların Pb esaslı camlarla değiştirilmesine yönelik çok sayıda çalışma rapor edilmiştir.

Azreen vd.(2018) betona amang ve kurşun cam ekleyerek numuneler üretmişlerdir. Üretilen numunelerin gama ışınlarına karşı kullanılabilirliğini incelemişlerdir. Ancak bu iki mineral uzun süreli basınç dayanımını azaltmıştır. Önerilen numunelerin gama ışını koruması için etkili olmasına rağmen, radyolojik güvenlik endişeleri yarattığını beyan etmişlerdir.

Han vd. (2018) silika kumunun nükleer tesislerin yapımında pratik uygulamaya sahip olduğunu ifade etmişlerdir. Radyasyon kalkanını iyileştirmek için geri dönüştürülmüş kaba agregayı da ek olarak önermişlerdir. Yaptıkları çalışmalar neticesinde betonda silika kumunun kullanılmasının gama ve nötron radyasyonunu azalttığını beyan etmişlerdir. Betona silika kumu ile beraber kaba agreganın ilave edilmesinin radyasyon azaltma performansını arttırdığını ifade etmişlerdir.

Eid vd. (2022) bileşimine atık cam eklenmiş çimento numunelerinin radyasyon koruyucu özelliklerini araştırmışlardır. Numunelerin kütle azaltma katsayılarını, radyasyon zırhlama yeteneklerini değerlendirmek için deneysel olarak belirlemişlerdir. Sonuçta genel olarak, %50 atık cam içeren çimento numunesinin radyasyondan korunma uygulamaları için en büyük koruma potansiyeline sahip olduğunu ve atık camın yeniden kullanılması için faydalı bir yol olduğu sonucuna varılmıştır.

Masaoud vd. (2020) serpantinit agreganın, ağır agrega içeren betonun radyasyon azaltma özelliklerini iyileştirdiğini beyan etmişlerdir. Serpantinit betonun normal ve hematitserpantinit betona göre daha yüksek radyasyon azaltma özelliklerine sahip olduğunu ve aynı zamanda ilmenit-limonit betondan daha düşük gama radyasyon azaltma özelliğine sahip olduğunu ifade etmişlerdir.

Zayed vd. (2020) antigorit esaslı serpantinit betonun y-ışınlarına ve hızlı nötronlarına karşı lizardit ve krizotil esaslı serpantinit betona göre nispeten daha yüksek bir radyasyon
azaltma etkinliği gösterdiğini ifade etmişlerdir. Serpantinit betona barit ve hematit agregalarının eklenmesinin yoğunluğu arttırdığını ve mukavemetini azalttığını da raporlamışlardır.

El-Sayed vd. (2022) normal dayanımlı beton içerisine farklı nano katkı maddelerinin (nano alümina, karbon nanotüpler ve her iki malzemenin karışımı) eklenmesinin, yüksek sıcaklıklara maruz kaldıktan sonra betonun hem mekanik hem de gama ışını radyasyonu koruma özellikleri üzerindeki etkilerini araştırmışlardır. Hem basınç dayanımı hem de gama ışını lineer zayıflama katsayısı (μ) testleri, yüksek sıcaklığa maruz kaldıktan sonra özelliklerdeki değişimin bir göstergesi olarak kullanılmıştır. Sonuçlar, tüm değiştirme oranlarında tüm nano katkı maddeleri için dikkate değer olumlu etkiler gösterirken, %1,5 nano alümina ile %0,1 oranındaki karbon nano tüplerin karışımı, hem mekanik hem de radyasyon kalkanı özellikleri için optimum seviyeyi gösterdiğini rapor etmişlerdir.

Tekin vd. (2017) tungsten oksit (WO₃) nanoparçacıklarının betonun kütle azaltma katsayıları üzerindeki etkisini MCNPX (versiyon 2.4.0) simülasyonunu kullanılarak araştırmışlardır. Tavsiye edilen MCNPX simülasyon geometrisinin doğrulaması, sonuçların betonun kütle azaltma katsayıları için standart XCOM verileriyle karşılaştırılmasıyla sağlanmıştır. XCOM ve MCNPX arasında çok iyi bir uyum gözlenmemiştir. Doğrulanmış geometri, nano- WO₃ ve mikro WO₃ 'ün beton numuneye tanımlanması için kullanılmıştır. Saf beton ve WO₃ 'ün kütle azaltma katsayıları mikro boyutlu ve nano boyutlu katkılı beton karşılaştırılmıştır. Sonuç WO₃ 'ün katkılı betonun malzemenin zırhlama özelliklerini iyileştirdiğini gözlemlemişlerdir.

Papachristoforou ve Papayianni (2018) bir araştırmada, kaba agrega için kısmi bir ikame olarak EAF (çelik endüstrisinin bir yan ürünü) cürufa iki farklı tipte çelik lif dahil etmişlerdir. Sonuç olarak, farklı foton enerjileri için EAF lineer azaltma katsayısının, standart betona kıyasla yaklaşık %10-15 arttığını gözlemlemişlerdir.

Zeyad vd. (2022) çeşitli ağır ve ince agregaların betona dahil edilmesi ile üretilen betonların basınç dayanımı, yoğunluk, zırhlama kapasitesi gibi farklı özelliklerini iyileştirmede üstün olabileceğini ortaya koymuşlardır. Sonuçta betona bu tür agregaların dahil edilmesinin radyasyon iletimini sınırlandırdığını beyan etmişlerdir.

Alzahrani vd. (2021), TeO₂ –Na₂O – TiO₂ cam sisteminin gama radyasyonu, termal nötronlar ve yüklü parçacıklara karşı zırhlama özelliklerinde TiO₂ içeriğinin rolünü incelemişlerdir. Foton zırhlama verimliliğini, %0 ila % 20 mol arasındaki TiO₂ konsantrasyonu için PHITS simülasyonu ve Phy-X arayüzü ile tahmin etmişlerdir. TiO₂/Na₂O konsantrasyon oranı arttıkça cam numunelerin bu verimliliğinin arttığını gözlemlemişlerdir. Aynı eğilim, toplam termal nötron kesiti ve yüklü parçacık absorbsiyon yetenekleri için de gözlemlemişlerdir.

Kebaili vd. (2021), kalkojenit camlarının Bi oranındaki değişimin camların yapısal, optik ve foton azaltma yeteneği üzerinde etkili olduğunu ifade etmişlerdir. Çalışmaya göre, Bi içeriğindeki artış, foton azaltma yeteneği üzerinde olumlu bir etkiye sahip olduğunu gözlemlemişlerdir.

Velascoa vd. (2022) bir çalışmada Phy-X/PSD yazılımı kullanılarak 1 keV'den 100 GeV'ye kadar foton enerjisi için üç tip tuğlanın radyasyon zırhlama ve dozimetrik parametrelerini belirlemişlerdir. Karşılaştırma için aynı parametreleri NBS türü beton için de hesaplanmışlardır. Hesaplanan parametreler, lineer zayıflama katsayıları, etkin atom numaraları, yarı değer katmanları (YKD), enerji soğurma faktörleri (EABF) ve maruz kalma yığılma faktörleri (EBF) parametreleridir. Elde edilen sonuçlardan, mamografi üniteleri (30 keV'den az) barındıran tıbbi tesislerin tasarımında üç tip tuğlanın güvenle kullanılabileceğini rapor etmişlerdir.

Alfryyan vd (2022) tellürit içerikli camların iyonlaştırıcı radyasyon zırhlama kapasitelerini araştırmışlardır. Mevcut cam malzemelerin gama ışını, hızlı nötron ve elektron zırhlama parametrelerini GEANT4, Phy-X/PSD yazılımı, ESTAR ve deneysel olarak analiz etmişlerdir. Sonuç olarak camların zırhlama yeterliliğinin, bazı geleneksel zırhlama malzemelerinden daha iyi sonuçla verdiğini dolayısıyla nükleer tesislerde radyasyon güvenliği amacı için yeterli bir potansiyele sahip olduklarını beyan etmişlerdir.

Alshahrani vd. (2022) kimyasal içeriğinde 60Li₂O₃ -10Y₂O₃ -(30-x)B₂O₃ –xDy₂O₃ olan yeni bir cam sisteminin foton zırhlama parametrelerini incelemişlerdir. Bunun yanında cam sisteminin hızlı nötron uzaklaştırma özelliklerini de analiz etmişlerdir. Sonuç olarak

bu cam sisteminin kullanıldığı gözlüklerin yaygın olarak kullanılan cam sistemlerinden daha iyi bir koruma potansiyeline sahip olduğunu göstermişlerdir.

Alharshan vd. (2022) TeO₂–ZnO–LiF–NaF cam sisteminin radyasyon zırhlama kapasitelerini tahmin etmeye çalışmışlardır. Bu cam sistemine Nb₂O₅ katkısı eklenerek zırhlama parametrelerini incelemişlerdir. Sonuçta standart koruyucu camlar ve beton ile karşılaştırıldığında, üretilen camların üstün derecede zırhlama yetenekleri olduğunu not etmişlerdir.

Libeesh vd. (2022) yaptıkları bir çalışmada karmaşık malzemelerin gama ışını zırhlama kapasiteleri 0.015 – 15 MeV foton enerjisi aralığında belirlenmiştir. Yapılan bu çalışmada maksimum Fe içeren dunit numunesinin, araştırılan malzemelerle karşılaştırıldığında üstün zırhlama özellikleri gösterdiğini ifade etmişlerdir. Sonuçta dunitin üstün zırhlama özelliklerinin, nötron ve ağır iyonlar gibi diğer radyasyon türleri için araştırmaya değer olduğu sonucuna ulaşmışlardır.

Abdalla vd. (2022) granit numunelerinin radyasyon zırhlama performansını araştırmışlardır. Granit numunelerinin radyasyon zırhlama yeteneklerini 59,5, 661,6, 1173 ve 1332 keV'de deneysel olarak test etmişlerdir. Granit örneklerinin düşük enerjilerde önemli derecede radyasyon azaltma etkinliğine sahip olduğunu ifade etmişlerdir. Ayrıca, deneysel lineer azaltma katsayısı değerlerinin XCOM programı kullanılarak teorik olarak elde edilen değerlerle uyumlu olduğunu göstermişlerdir.

Akkurt ve Malidarre (2022) çeşitli mermer katkılı beton numunelerinin gama foton zırhlama performanslarını elde etmek için FLUKA Monte Carlo Kodu, Phy-X:PSD yazılımı ve analitik yöntem kullanmışlardır. Yarı kalınlık değeri (YKD), radyasyon geçirme oranı ve radyasyondan koruma verimliliği (RKV) gibi gama foton azaltma parametrelerini FLUKA simülasyon kodunu kullanarak belirlemişlerdir. Bulgular, MC25 kodlu en ince mermer türünün daha iyi YKD'ye sahip olduğunu ve sonuç olarak diğer mermer beton örnekleri ile karşılaştırıldığında daha iyi bir zırhlama performansı gösterdiğini gözlemlemişlerdir.

Aygün vd. (2021) dört yeni krom katkılı ağır beton için hem nötron hem de foton azaltma özelliklerini değerlendirmek için bir çalışma yapmışlardır. Buna göre önerilen krom içerikli yeni ağır beton örneklerinin hem nötron hem de gama radyasyonu azaltma performanslarının yaygın olarak tercih edilen referans numunelere göre çok yüksek olduğunu bildirmişlerdir.

Aygün (2020) yapığı bir çalışmada üç tür paslanmaz çelik örneği tasarlayıp bu alaşımların gama ve nötron azaltma performanslarını değerlendirmiştir Araştırmada hızlı nötronların radyasyon koruma performansını, toplam makroskopik tesir kesiti, ortalama serbest yol ve nötron geçirme parametrelerini GEANT4 kodunu kullanarak belirlemiştir. Sonuçlar yaygın olarak kullanılan 316LN tipi paslanmaz çelikle karşılaştırmıştır. Tasarımı yapılan paslanmaz çelik türlerinin radyasyon azaltma performanslarının 316LN tipinden daha üstün olduğunu bildirmiştir.

El-Samrah vd. (2022) dolomit, barit, ilmenit ve selestit olmak üzere 4 farklı iri agrega tipini içeren betonların gama zırhlama kapasitelerini WinXCOM programı ile, nötron zırhlama performanslarını MRCsC ve JANIS-4 programlarını kullanarak incelemişlerdir. Sonuçlar, barit ve selestit içeren beton karışımlarının, belirlenen enerji aralığında gama ışınlarını azaltmada yeterli olduğunu gözlemlemişlerdir.

Al-Ghamdi (2022) yapısında farklı oranlarda tungsten oksit içeren bazı ağır beton numuneleri hazırlamış ve elde edilen numunelerin mekanik ve radyasyon zırhlama özelliklerini teorik ve deneysel teknikler kullanarak incelemiştir. İncelenen tüm enerji değerlerinde, deneysel test ile teorik veriler arasında kabul edilebilir ölçüde uyum olduğunu göstermiştir. En yüksek yoğunluğa sahip 400 kg/m³ WO₃ içeren Cons-5 kodlu numunenin gama radyasyona karşı en iyi sonucu verdiğini ifade etmiştir.

Cheewasukhanont vd. (2022) radyasyon zırhlamada kullanılmak üzere yüksek yoğunluklu WO₃ -Gd₂O₃ –B₂O₃ camların radyasyon zırhlama özelliklerini incelemişlerdir. Radyasyon zırhlama özelliklerinin araştırılması için ¹³⁷Cs radyoizotop kaynağını kullanmışlardır. Deneysel değerleri, WinXCom ve GEANT4 ile karşılaştırmışlardır. Bulgular neticesinde kütle azaltma katsayılarının artan WO₃ içeriği ile biraz arttığını ve artan enerji ile azaldığını ifade etmişlerdir. Benzer şekilde Z_{etk} ve N_{etk}

değerlerinin, artan WO₃ miktarı ile hafifçe artan ve artan gama ışını enerjisi ile azalan benzer eğilimleri not etmişlerdir.

Dong vd. (2022) yaptıkları çalışmada nötron radyasyonu tehlikelerine karşı zırhlama için son derece uygun maliyetli bir zırhlama malzemesi olarak bor içeren yüksek firin cürufunun (B₃FS) önermişlerdir. Hazırlanan kompozitlerin termal nötronlara karşı koruma performansının karakteristiği, Am-Be nötron kaynağı ile test edilmiştir. Sonuç olarak hazırlanan kompozitlerin zırhlama kabiliyeti referans olarak kullanılan bazı ticari zırhlama materyallerinden daha iyi olduğunu ifade etmişlerdir.

Amin vd. (2022) değişen su-çimento oranı ile (w/c) ile radyasyon azaltma karakteristikleri arasındaki ilişkiyi incelemişlerdir. Radyasyon azaltılma karekteristiklerini, beton tarafından emilen su miktarı ve lineer zayıflama katsayısı arasındaki ilişkiyi hesaplamışlardır. Ek olarak, betonun radyasyon koruma kapasitesini tahmin etmek için yapay sinir ağı (YSA) ve gen ekspresyon programlama (GEP) modellerini geliştirmişlerdir.

Luo vd. (2022) yüksek sıcaklıkların radyasyon koruma betonun (RSC) fiziksel, mekanik ve zırhlama özellikleri üzerindeki etkilerini araştırmışlardır. Yüksek sıcaklıkların, RSC'nin mekanik ve gama zırhlama özelliklerinin bozulmasına neden olduğunu, barit betonun yüksek sıcaklıklarda termal olarak daha az kararlı özellikler gösterdiğini ve manyetit betonun yüksek sıcaklıkl ortamında radyasyon koruma için daha uygun bulunduğunu ifade etmişlerdir.

Tamayo vd. (2022) iyonlaştırıcı radyasyon zırhlama alanında farklı beton karışımları karşılaştırmışlardır. Su/çimento oranı ve CEM türü çimentoların iyonlaştırıcı radyasyon zırhlama özelliklerini nasıl etkilediğine dair analizler yapmışlardır. s/c oranındaki her 0.1 artış için lineer azaltma katsayısında düşüş gözlendiğini bildirmişlerdir. Simülasyon ve deneysel sonuçlar arasında %95'e varan bir uyumun olduğunu beyan etmişlerdir.

Daungwilailuk vd. (2022) yaptıkları bir çalışmada yerel mineraller, barit ve kesilmiş çelik çubuklar içeren betonun gama ışını ve hızlı nötron radyasyonuna karşı koruma performansını değerlendirmişlerdir. Baritin betonda ince ve kaba agrega olarak kullanılması, numunelerin mukavemet ve yoğunluğunun yanı sıra radyasyondan korunma yeteneğini arttırdığını, katkı malzemesi olarak kesilmiş çelik çubukların kullanılmasının da, gama ışınlarının ve nötronların zayıflama katsayılarını önemli ölçüde iyileştirdiğini ifade etmişlerdir.

Zalegowski vd. (2020) gadolinyum ve boraks gibi hızlı nötron düzenleyiciler ve termal nötron emiciler içeren malzemelerle modifiye edilen Yeni Nesil Koruyucu Betonun (NGS-Beton) radyasyon koruma özellikleri üzerine bir çalışma sunmuşlardır. Referans sıradan betonu (OC), iri agreganın ezilmiş granitten manyetite ve çimentonun CEM III 42,5N'den CEM I 42.5R'ye değiştirilmesiyle modifiye etmişlerdir. Deneysel olarak mikro yapı çalışmaları kırılma yüzeyinin analizi, kesitlerin görsel ve görüntü analizi, taramalı elektron mikroskobu kullanılarak yapılan gözlemler, hacim ve mutlak yoğunluk ve gravimetrik ölçümlerden hesaplanan toplam gözeneklilik, basınç dayanımı, ultrasonik ses darbe hızı (UPV) ve nötron radyasyonu eşdeğer doz azaltımı ile belirlenen, yarı kalınlık değeri (YKD) olarak ifade edilen nötron radyasyonu koruma verimliliği ölçümlerini gerçekleştirmişlerdir. Araştırmada tüm betonlar için basınç dayanımı ve ultra ses geçiş hızı arasında iyi bir korealasyon doğrulanmıştır. Nötron radyasyonu koruma verimliliğinin esas olarak hacim yoğunluğundan etkilendiğini gözlemlemişlerdir. Çalışmanın sonucunda nötron radyasyon kalkanının, esas olarak agreganın faz ve atomik kompozisyon değişiklikleri ve daha az ölçüde mikro yapı değişiklikleri ile belirlenen beton hacim yoğunluğuna bağlı olduğu sonucuna varılmıştır.

Katubi vd. (2022) yaptıkları bir çalışmada kimyasal bileşimi 50B₂O₃ + x Li₂O + 20ZnO + (30 - x) Na₂O (burada x = %5, %10 ve %20 mol) olan ve BLZN-A, BLZN-B, BLZN-C olarak kodlanmış üç borat camının, gama ışını, yüklü parçacık (elektronlar, protonlar, alfa parçacıkları ve karbon iyonları) ve nötronlara karşı koruyucu özelliklerini araştırmışlardır. Gama ışını azaltma katsayıları FLUKA simülasyon kodu ve XCOM programı ile hesaplanırken, parçacıkların durma güçleri ve aralığı SRIM yazılımı ve NIST veri tabanına dayalı olarak değerlendirilmiştir. Elde edilen sonuçlar, mevcut cam numuneler için gama ışını ve yüklü parçacık koruma kabiliyetinin 0,01–10 MeV enerji aralığı için BLZN-A < BLZN-B < BLZN-C olarak sırasıyla arttığını göstermişlerdir. Elde edilen bulgular camların zırhlama performansının, sıradan beton ve ticari cam zırhlama malzemeleri gibi bazı geleneksel zırhlardan daha yüksek olduğunu göstermiştir. Bu

nedenle, mevcut BLZN cam sistemi, hastanelerde ve nükleer tesislerde pratik uygulamalar için büyük bir potansiyele sahip olduğunu ifade etmişlerdir.

Sayyed vd. (2022) yaptıkları başka bir çalışmada betona bazı endüstriyel ürünleri (kırmızı çamur ve katot ışın tüpleri) ekleyerek oluşturdukları numuneleri önermişlerdir. Endüstriyel ürünlerin kullanımının, radyasyondan koruyucu betonun zırhlama performansını artırdığını beyan etmişlerdir. Çalışmada beş farklı beton blok dökülmüştür. Bu blokların yoğunluğu, basınç dayanımı ve gama zırhlama özelliklerini araştırmışlardır. Test sonuçları, 2, 3 veya 5 cm kalınlığındaki kompozit betonların düşük enerjili radyasyona karşı iyi zırhlama malzemesi olduğunu göstermiştir.

Öz vd. (2022) yaptıkları bir çalışmada jeopolimer numunelerinin foton ve hızlı nötron zırhlama özelliklerini araştırmışlardır. Çalışmaya göre kuvars içeriği değişen 4 tür jeopolimer üretmişlerdir. Bunların içinde M3 numunesi yüksek GBFS (öğütülmüş yüksek fırın cürufu) içeriği nedeniyle iyi bir gama ışını koruma performansına sahipken, yüksek kuvars kumu içeriği nedeniyle M1 numunesinin ise, çalışılan jeopolimerler arasında hızlı nötron koruması için en etkili numune olduğunu bildirmişlerdir.

Henieagal vd. (2022) ultra yüksek ağır betonda (UHPHWC) ince agregaların ikamesi olarak kullanılmak üzere siyah kumdan ayrılmış ilmenit ve manyetit kullanmışlardır. Ayrıca nano ferrosilikonu(NFS) çimento kütlesinin %1, %2 ve %3'ü oranlarında çimentoya eklemişlerdir. Bu katkıların UHPHWC'nin mikro yapısı, gama ışını azaltma katsayısı, mekanik özellikleri ve yoğunluğu üzerindeki etkilerini araştırmışlardır. Bulgular neticesinde ince kumun ilmenit ve manyetit ile toplam ikamesi, 28 gün sonra beton karışımlarının azaltma verimini sırasıyla %18,9 ve %24,2 arttırdığını belirtmişlerdir. UHPHWC üretmek için %3 NFS eklenmesi ile, sırasıyla 7, 28 ve 91 gün sonra 130,5, 167,2 ve 189,8 MPa'lık en yüksek basınç dayanımlarına ulaşmışlardır Ayrıca %3 NFS ve %100 manyetit içeren kombinasyon, maksimum yoğunluk ve gama ışını azaltma kapasitelerine sahip olduklarını not etmişlerdir.

İmamoğlu vd. (2022) yaptıkları bir çalışmada, 1 keV ila 100 GeV foton enerjisi aralığında yapay sinir ağı (YSA) modeli kullanılarak farklı oranlarda üleksit ilave edilerek üretilen betonların lineer azaltma katsayılarını tahmin etmişlerdir. YSA

modelinin temel girdisi foton enerjisi, yoğunluk ve üleksit oranıdır. YSA kullanılarak elde edilen bulgular, XCOM hesaplamaları ile elde edilen sonuçlarla karşılaştırılmış ve %99'luk doğrusal korelasyon gözlemlemişlerdir.

Malkapur vd. (2021) gama ve nötron radyasyonu zırhlama özelliklerini incelemek için Atık Polimerle Birleştirilmiş Beton (WPIC) numuneleri hazırlamışlardır. Bu numunelerde, geleneksel bileşenler yerine, demir endüstrisinden gelen atık polimerik malzeme ve yüksek yoğunluklu ince ve iri agrega bileşenlerinin aynı anda kullanımını tercih etmişlerdir. Elde edilen sonuçlara göre demir endüstrisinin yan ürünleriyle birlikte atık plastiklerin, hem gama hem de nötron radyasyonları açısından kabul edilebilir basınç dayanımı özelliklerine ve önemli ölçüde geliştirilmiş zırhlama yeteneklerine sahip beton karışımlarının radyasyon korumada rahatlıkla kullanılabileceğini rapor etmişlerdir.

Tuna vd. (2021) bor karbür (B₄C) takviyeli polyester tabanlı kompozit malzemelerin nötron zırhlama yeteneklerini araştırmışlardır. Çalışma için 20, 40 ve 60 mm kalınlığındaki numuneler önce %10-50 B₄C ile takviye edilerek hazırlanmış ve daha sonra çeşitli karakterizasyon teknikleri kullanılarak nötron zırhlama özellikleri incelemişlerdir. Sonuçta kompozit malzemelerin zırhlama kabiliyetlerinin numune kalınlığı ile arttığı gözlemlenmiştir.

Abdülaziz vd. (2022) etilen-propilen dien kauçuk ve düşük yoğunluklu polietilen ile nötron koruyucu malzemeler içeren bor karbür dolgulu çift polimer matris üretti. Yüksek miktarda bor karbür eklenmesinin (ağırlıkça %57) nötronları yaklaşık %85 oranında keskin bir şekilde azalttığını bildirmişlerdir.

Hassanpour vd. (2022) yaptıkları bir çalışmada, grafen/h-BN meta malzemelerinin, MCNPX simulasyon kodu ile hem termal hem de hızlı nötron için moderatör ve nötron soğurucu olarak kullanılabilirliğini araştırmışlardır. Üretilen numune üzerine, Monte Carlo simülasyon giriş dosyasında 100 keV ila 15 MeV enerji aralığına sahip bir Am-Be nötron kaynağı tarafından üretilen ışınlar gönderilmiştir. Ortaya çıkan mevcut iletim hızı, MCNPX koduyla araştırılmıştır. Betonun radyasyon zırhlama malzemesi olarak yaygın kullanımı nedeniyle, bu tasarımın sonuçları da beton numunelerle karşılaştırılmıştır. Sonuçlar, betona kıyasla üretilen numunelerin zırhlama karakteristiklerinde önemli bir iyileşme olduğunu raporlamışlardır.

Piotrowski (2021) radyasyon zırhlama parametrelerini iyileştirmek amacı ile betona farklı katkı maddeleri eklemiş ve bazı karşılaştırmalar yapmıştır. Karşılaştırmalarını sıradan betona göre yapmıştır. Elde edilen bulgulara göre, nötron zırhlamada en iyi sonucun betona akrilik—manyetit karışımına karşımın %1'i oranında Gd ekleyerek elde edildiğini belirtmiştir.

C. Harrison vd. (2008) çalışmalarında, dolgu partiküllerinin başarılı yüzey modifikasyonunun hem bor nitrür hem de bor karbür dolgulu polietilen matris kompozitlerinin mekanik özelliklerini geliştirdiğini bildirmişlerdir. Bununla birlikte, bor karbür ve bor nitrür katkılı kompozitlerin zırhlama nötron zırhlama karakteristiklerinin polietilen-saf numunelerden biraz daha iyi olduğunu bildirmişlerdir.

Kaur vd. (2019) nötron radyasyonu önlemede kullanılmak üzere bizmut katkılı lityum borat camları incelemişlerdir. Hazırlanan camların yapısal özellikleri, kimyasal dayanıklılıkları, gama ışını zırhlama özellikleri, yığılma faktörü ve hızlı nötron koruma özellikleri incelenmiştir. Sentezlenen malzemelerin nötron koruma özellikleri su, grafit, ve hematit-serpantin ile karşılaştırılmıştır. Sonuçta incelenen bizmut-lityumun -borat cam sistemi hem gama radyasyon için hem de nötron radyasyonu için çok daha iyi radyasyon zırhlama özelliğine sahip olduğunu belirtmişlerdir. Hazırlanan camların PET (Pozitron Emisyon Tomografisi), X-ışını, medikal radyoterapi üniteleri, yüksek enerjili fizik laboratuvarları, nükleer reaktörler, radyasyon atık saklama kutuları gibi çeşitli tesislerde radyasyon koruyucu pencere olarak kullanılabileceğini belirtmişlerdir.

Yin vd. (2022) (100-x)(60TeO₂ -40PbO)-xB₂O cam sisteminde B₂O_{3'ün} cam radyasyon zırhı olarak kullanılmasının rolünü incelemişlerdir. Burada x = 0, 1, 2, 3, 4 ve 5 moldür. Camın içeriğini SEM ve XRD testleri ile incelemişlerdir. Camın radyasyon özelliklerini deneysel ve teorik olarak hesaplamak için radyasyon kaynakları (⁵⁷Co, ⁶⁰Co, ¹³⁷Cs, ¹³³Ba ve ²⁴¹Am) ve WinXCOM yazılımını kullanmışlardır. Camın gama zırhlama yeteneğini, kütle azaltma katsayısını kullanarak değerlendirmişlerdir. Yarı kalınlık değeri (YKD), ortalama serbest yol (MFP) ve etkin atom numarası (Z_{etk}) hesaplanmıştır. Camların nötron radyasyonuna karşı zırhlama kabiliyeti, hızlı nötron uzaklaştırma tesir kesiti (RCS) değeri hesaplanarak analiz etmişlerdir. Camın gama ve nötron radyasyona karşı sıradan özelliklerini, çeşitli beton ve diğer tellürit zırhlama camlarla karşılaştırmışlardır. Ölçülen kütle azalma katsayılarının, WinXCOM yazılımı kullanılarak elde edilen teorik değerlerle uyumlu olduğunu bildirmişlerdir. Düşük YKD, MFP değerleri ile yüksek kütle azaltma katsayısı, Zetk ve RCS değerleri, bu cam malzeme serisinin iyi zırhlama özelliklerine sahip olduğunu gösterdiğini ifade etmişlerdir. Elde edilen bulgulara göre TPB-1 cam numunesinin en iyi radyasyon koruma performansını gösterdiğini bildirmişlerdir.

Madbouly vd. (2022) yaptıkları bir çalışmada, 662, 1173, 1275 ve 1333 keV gama ışını enerjileri için bizmut-borofosfat camların foton geçirgenlikleri, lineer azaltma katsayıları, yarı kalınlık değeri, onda-bir kalınlık değeri ve ortalama serbest yol değerlerini deneysel olarak belirlemişlerdir. Daha sonra belirlenen bu değerleri FLUKA kodu ile karşılaştırmışlardır. FLUKA kodu bulgularının, deneysel sonuçlarla iyi bir uyum içinde olduğunu bildirmişlerdir. Radyasyona karşı zırhlamada, bizmut-borofosfat camların mükemmel gama ışını koruma özelliklerine sahip olduğunu ifade etmişlerdir.

Alzahrani vd.(2022) yaptıkları çalışmada borat ve tellürit camlarının radyasyon zırhlama özelliklerini karşılaştırmayı amaçlamışlardır. GEANT4 simülasyonları ile hem borat hem de tellürit camların radyasyon zırhlama özelliklerini değerlendirmişlerdir. İncelenen enerji bölgesinde tellürit camların ortalama serbest yolları (OSY) borat camların OSY değerinden daha düşüktür. Buna göre tellürit camların borat camlarından daha yüksek foton azaltma özelliklerine ve dolayısıyla daha iyi zırhlama malzemesi olduğu sonucuna varmışlardır.

Yonphan vd. (2022) yaptıkları bir çalışmada, esnek radyasyon zırhlama malzemeleri üretimi için antimon oksit (Sb₂O₃) ilaveli doğal bir kauçuk (NR) geliştirmişlerdir. NR'nin kompozitlerini farklı oranlarda Sb₂O₃ konsantrasyonlarında hazırlamışlardır. NR kauçuğun gama radyasyona karşı zırhlama özellikleri, 0,223 MeV – 0,662 MeV enerji aralığında Compton saçılma tekniği kullanılarak ölçülmüş ve teorik değerlerle kıyaslama yapmışlardır. Kütle azaltma katsayısı, etkin atom numarası ve etkin elektron yoğunluğunun artan Sb₂O₃ oranı ile arttığını beyan etmişlerdir. Ayrıca, ticari camlar, beton ve kırmızı tuğla ile karşılaştırıldığında kompozitlerin yarı kalınlık değerlerinin daha düşül olduğunu gözlemlemişlerdir. Bu bulgulara dayanarak araştımacılar Sb₂O₃ eklenmiş NR kauçuk kompozitlerinin radyasyona karşı zırhlama malzemesi olarak kullanılabileceğini beyan etmişlerdir.

Nagaraj vd (2022) lantan polimerleri, seryum polimeri, Praseodimyum polimer, Gadolinyum teksafirin gibi lantanit polimerlerinin X-ışınları ve nötron zırhlama parametrelerini incelemişlerdir. Elde edilen verilere göre diğer tüm lantanit polimerleriyle karşılaştırıldığında, erbiyum fosfat hidrat polimerinin maksimum en yüksek zırhlama potansiyeline sahip olduğunu bildirmişlerdir.

Arfa vd. (2022) nükleer zırhlama ve mekanik özellikleri açısından optimum beton korumanın belirlenmesine dayalı olarak, sıradan betonun (OC) performansı ile içeriğinde farklı çelik lif içerikleri barındıran yeni nesil reaktif toz beton (RPC) arasındaki farkı analiz etmişlerdir. İncelenen numunelerin yapısal özelliklerini incelemek için yoğunluk, basinc ve çekme dayanımları, X-1s1n1 kırınımı (XRD), taramalı elektron mikroskobu (SEM) ve diferansiyel termal analizi (DTA) kullanmışlardır. Kütle azaltma katsayılarını belirlemek için 59,5 keV'den 1407 keV'e kadar dokuz farklı gama ışını enerjisini kullanmışlardır. Hazırlanan betonların makroskopik nötron kesitlerini (Σ , cm⁻ ¹) belirlemek için üç tip nötron enerjisi (yavaş nötron, toplam yavaş nötron ve 10 keV'den büyük enerjili nötron) kullanmışlardır. Sonuçlar, çelik lif içeriğinin, RPC'nin mekanik ve nükleer zırhlama özellikleri üzerinde olumlu bir etkiye sahip olduğunu göstermiştir. Araştırmalardan elde edilen sonuçlara göre her iki tip betonun da yüksek sıcaklıklara maruz kalmasından sonra, RPC'nin nükleer zırhlama ve mekanik özelliklerinin, sıradan betona göre iyileşme gösterdiğini rapor etmişlerdir.

Park vd. (2022) çimento bazlı malzeme uygulamaları için bir polimer-bor kompozitinin nötron zırhlama performansını geliştirmek, karakterize etmek ve değerlendirmek amaçlı bir çalışma yapmışlardır. Buna göre mikro boyutlu bir polietilen/ B₄C kompozit (Poly-B) tozu sentezlemişlerdir. Poly-B içeren bir çimento hamuru hazırlamışlardır ve Poly-B'nin çimento ve nötron kalkanlama performansı deneysel olarak değerlendirmişlerdir. Deneysel olarak elde edilen sonuçları, Monte Carlo N-parçacık (MCNPX) kodu kullanılarak karşılaştırmışlardır. Poly-B, borlu betonun zırhlaması için daha uygun bir katkı maddesi olduğunu ifade etmişlerdir. Ayrıca polietilenin, B₄C partiküllerinin yüzeyini kapladığından, Poly-B, çimento hidratasyonu sırasında borik asit çözünmesini bastırdığını, saf B₄C katkılı çimento hamuruna kıyasla Ca(OH)₂ tüketimini azalttığını ve bu nedenle, Poly-B'nin betona dahil edilmesinin, çimentolu malzemelerin nötron geçişini azaltabileceğini bildirmişlerdir.

Gökmen. (2022) Inconel 718 (NiCr₁₉Fe₁₉Nb₅Mo₃) ile güçlendirilmiş B₄C'ün (ağırlıkça %0-25) nötron ve gama ışını zırhlama özelliklerini PSD yazılımı kullanarak analiz etmiştir. Ortalama serbest yol (OSY), lineer ve kütle azaltma katsayıları, onda_bir değer ve yarı kalınlık değeri (OKD, YKD), etkin atom numarası (Z_{etk}), maruz kalma yığılma faktörleri (EBF) ve hızlı nötron uzaklaştırma tesir kesidi (FNRC) değerlerini 0,015–15 MeV enerji aralığında belirlemiştir.

Bulgulara göre B₄C içeriğindeki azalma ile kütle azaltma ve lineer azalt katsayılarının arttığını bildirmiştir. YKD, OKD ve FNRC değerlerini sırasıyla 0,018 cm ile 3,6 cm arasında, 2,46 cm ile 12,087 cm arasında ve 0,159 cm ile 0,194 cm arasında bulmuştur. Yapılan çalışmada, Inconel 718 en yüksek kütle azaltma katsayısı değerini, Z_{etk} değerlerini ve en düşük YKD değerini sağladığı için maksimum foton zırhlama özelliğini sağlarken, ağırlıkça %25 B₄C katkılı Inconel 718'in en yüksek FNRC değerini gösterdiğinden nötron için en iyi zırhlama malzemesi olduğunu rapor etmiştir.

Almatari vd. (2022) betona alternatif olarak bilyeli kil-çimento-demir cürufunun radyasyon zırhlama özelliklerini incelemişlerdir. Çeşitli çimento, bilyeli kil ve demir cüruf bileşimleri kullanılarak altı numune üretmişlerdir. Lineer azaltma katsayısını, Am-241, Cs-137 ve Co-60 ve bir HPGe dedektörü kullanılarak deneysel olarak rapor etmişlerdir. Deneysel ve XCOM sonuçların birbiri ile uyumlu olduğunu belirtmişlerdir. Ek olarak hazırlanan bilyeli kil-çimento-demir cüruf kompozitlerinin etkin atom numarası değerlerini de belirlemişlerdir. Sonucunda kompozitlere demir cürufu ilave edilmesinin lineer azaltma katsayısı değerini artırdığını beyan etmişlerdir.

Roslan vd. (2019) ferro boru, gama ve nötron radyasyonunu azaltmak için yüksek yoğunluklu beton için bir agrega olarak kullanmışlardır. Betona %25 ve %50 ferro bor eklenmesi ile malzeme mukavemetini arttığını gözlemlemişlerdir. Gama ışınlarının ve nötronların zırhlama kapasitelerinin betondaki ferro bor yüzdesi ile beraber arttığını gözlemlemişlerdir.

Khanzadeh vd. (2020) değişen miktarlarda borosilikat cam tozu içeren çimento esaslı macun ve harç karışımlarının hem puzolanik reaktivitesini hem de nötron zırhlama özelliklerini değerlendirmişlerdir. Deneysel sonuçlar, borosilikat cam tozu kullanımının erken dönemde tek başına çimento hamuru için beklenenden daha fazla hidratasyon ısısı ile zırhlama performansını gözlemlemişlerdir. Borosilikat cam tozu miktarının arttıkça harcın nötron zırhlama karateristiklerinin %10 ila %40 oranında arttığını bildirmişlerdir.

Daungwilavulk vd. (2021) farklı beton karışımları için hızlı nötron zırhlama tesir kesitlerini incelemişlerdir. İnce agregalı baritin, nötron zırhlama performansını önemli ölçüde arttığını beyan etmişlerdir. Bunun yanında su/çimento oranın değiştirilmesi ile, nötron zırhlama karakteristiklerinin değişmediğini gözlemlemişlerdir.

Hassanpour (2022) bazı atık gıda maddelerinin eklenmesi ile meydana gelen betonun mekanik ve nötron zırhlama özelliklerini incelemişlerdir. Atık gıda malzemelerinin betona eklenmesi ile nötron zırhlama parametrelerinin saf betona göre daha iyi sonuçlar verdiğini bildirmişlerdir.

Galehdari ve Kelkar (2017), polimer kompozitlerin mekanik, termofiziksel özellikleri ve zırhlama üzerindeki etkisini incelemişlerdir. Bu nötron radyasyonu çalışmada araştırmacılar, nano boyutta bor nanotoz, gadolinyum ve bor karbür gibi epoksi bazlı nanokompozitler malzemelerle güçlendirilmiş malzemelerin nötron zırhlama parametrelerini incelenmişlerdir. Bu çalışmanın sonucuna göre, çalışılan nanokompozitlerin nötron koruma verimliliğinin, saf epoksiden daha iyi olduğunu ortaya koymuşlardır.

An vd. (2022) H₃BO₃ –K₂CO₃ –MgO–TeO₂ –ZnO–AgNO₃ bileşimindeki cam sistemlerini uygun sıcaklıklarda eritme yöntemiyle sentezlemişlerdir. Gama ve nötron zırhlama parametrelerini Phy-X/PSD arayüzünü kullanarak 15 keV ile 15 MeV arasında değişen enerjilerde incelemişlerdir. Önerdikleri bu cam sisteminin nötron radyasyona karşı mükemmel koruma sağladığını bildirmişlerdir.

Olarinoye vd. (2021) Ag₂O/V₂O₅ ikamesinin $xAg_2O + 40TeO_2 + (60 - x)V_2O_5$ kimyasal bileşimine sahip tellürit cam sisteminin gama ve nötron radyasyon zırhlama parametreleri üzerindeki etkisini FLUKA simülasyon programı ile araştırmışlardır. (0 < x < 50% mol arasında bir değerdir). Elde edilen sonuçlara göre, mevcut cam sistemleri arasında foton zırhlama, hızlı nötron zırhlama bakımından en iyi zırhlama malzemesi olarak %50 Ag₂O katkılı numune olduğunu gözlemlemişlerdir.

Mhareb vd. (2021) çok bileşenli borat bazlı cam serilerinin zırhlama özelliklerini araştırmışlardır. (80-y)H₃BO–10ZnO –10Na₂O–yBaO bileşimine sahip yedi adet cam numunesini incelemişlerdir. Burada borat bazlı cam serileri (y = 0, 5, 10, 15, 20, 25 ve 30 mol.) eritme yöntemiyle sentezlemişlerdir. Sonuçta sentezledikleri borat bazlı cam serilerinin radyasyondan koruma amaçlı kullanımını önermişlerdir.

Literatür incelemesinden de görüldüğü gibi, bronz, pirinç, paslanmaz çelik veya B₄C ile güçlendirilmiş betonlara ait gama ve nötron radyasyonu zırhlama karakteristikleri üzerine yapılan bir çalışma bulunmamaktadır. Sunulan tezde bronz, pirinç, paslanmaz çelik veya B₄C ile güçlendirilmiş betonun gama radyasyonu zırhlama parametreleri deneysel olarak belirlenmiştir. Ayrıca deneysel sonuçlar WinXCOM, GEANT4 ve FLUKA ile karşılaştırılmıştır. Nötron radyasyonu zırhlama parametreleri ise GEANT4 ve FLUKA simülasyon kodu yardımı ile belirlenmiştir.

2. KURAMSAL TEMELLER

2.1. Radyasyonun Tanımı ve Tarihçesi

Radyasyon, enerjinin uzayda veya maddesel bir ortamda dalgalar veya parçacıklar şeklinde yayılması veya iletimi olarak tanımlanır. Radyasyon sözcük anlamı itibari ile, bir kaynaktan yayımlanan ve tüm yönlerde dışa doğru hareket eden dalgalar olgusundan kaynaklanmaktadır. Bir nokta radyoaktif kaynaktan gelen her tür radyasyonun şiddeti, uzaklık ile ters orantılıdır(Weisstein, 2014).

Görünür ışık dışında kalan dalga boylarının elektromanyetik radyasyon barındırdığı 19.yüzyılın başlarında keşfedilmiştir. Örneğin kızılötesi radyasyonun varlığının ilk kez bilinmesi astronom William Herschel'e atfedilir. Herschel güneşten gelen ışığı bir prizma yardımı ile kırınıma uğratmış ve termometre yardımı ile kaydedilen sıcaklıklarda artış olması neticesinde kızılötesi ışınlarını tespit etmiştir.

1801'de Alman fizikçi Johann Wilhelm Ritter, bir prizmadan yansıyan ışınların gümüş klorürden hazırladığı numunelerin üzerine düştüğü zaman, gelen ışınların numuneleri mor ışıktan daha hızlı renk değişimine uğrattığını (kararttığını) belirterek ultraviyole ışının (UV) keşfini yapmıştır. Ritter'in yapmış olduğu deneyler neticesinde ek olarak UV ışınlarının kimyasal reaksiyonlara sebeb olduğunu da belirtmiştir. Tespit edilen ilk radyo dalgaları doğal bir kaynaktan değil, 1887'de Alman bilim adamı Heinrich Hertz tarafından üretilmiştir. Bunu yaparken Hertz, Jamas Clerk Maxwell'e ait denklemler tarafından önerilen formülleri referans alarak radyo frekansı aralığında salınımlar kullanılan elektrik devrelerini üretmek amacı ile kullanmıştır. Maxwell'in elektromanyetik dalgalarının gerçekliğini laboratuvar ortamında deneysel olarak ilk radyo dalgaları üreterek göstermiştir. Dolayısı ile radyo dalgaları ilk kez yapay olarak üretilmiştir (Davidson, 2014).

Wilhelm Röntgen, X-ışınlarını 1895'te keşfetmiştir. Havası alınmış bir tüpe uygulanan

yüksek gerilimlerle deneyler yaparken, deney ortamında bulunan kaplamalı cam plaka üzerinde bir aydınlık fark etmiştir. Bu olay sayesinde X-ışınlarının temel özellikleri keşfedilmiştir (Jeans, 1947). 1896'da Henri Becquerel, bazı minerallerden yayımlanan ışınların siyah kâğıdı etkilediğini ve yayımlanan ışınların etkilemediği bir fotoğraf plakasının buğulanmasına neden olduğunu ispat etmiştir. Marie Curie, yalnızca belirli elementlerin bu enerji ışınlarını yayımladığını keşfetmiştir. Bu davranışa radyoaktivite adını vermiştir.

Alfa ışınları (alfa parçacıkları) ve beta ışınları (beta parçacıkları) 1899'da Ernest Rutherford tarafından bazı deneylerle ayırt edilmiştir. Rutherford radyoaktif kaynağı kullanması sonucu kaynağın neden olduğu ışınların aynı malzeme içerisinde farklı oranda giricilik özelliklerene sahip olduğunu belirlemiştir. Rutherford'un alfa ışınları olarak adlandırdığı tür düşük giriciliğe (kağıt tarafından durdurulmuştu) ve pozitif bir yüke sahip olduğunu belirtmiştir. Beta parçacıkları ise daha nüfuz edici (filmi kağıttan geçirebiliyordu ama metalden geçemiyordu) ve negatif bir yüke sahip olduğunu belirtmiştir. Bu, Becquerel tarafından uranyum tuzlarından ilk kez tespit edilen radyasyondu. 1900 yılında Fransız bilim adamı Paul Villard radyumdan gelen nötr yüklü ve yüksek nüfuz edici radyasyon türü keşfetmiştir. Villard bu radyasyon türünü ifade ettikten sonra, Rutherford 1903'te üçüncü bir radyasyon çeşidinin varlığından söz etmiştir (Jeans, 1947).

Henri Becquerel, beta ışınlarının aslında hızlı elektronlar olduğunu ispatlamıştır. Rutherford ve Thomas Royds 1909'da alfa ışınlarının aslında iyonlaşmış helyumdan ibaret olduğunu kanıtlamışlardır. Gama ışınlarının aslında X-ışınlarına benzediğini ancak daha kısa dalga boylarına sahip olduklarını Rutherford ve Edward Andrade 1914'te kanıtlamıştır.

Uzaydan yayımlanarak Dünya'ya ulaşan kozmik ışın radyasyonların 1912'de bilim adamı Victor Hess'in serbest bir balon uçuşunda çeşitli irtifalara bir elektrometre taşımasıyla kesin olarak var olduğu kanıtlanmıştır. Bu tür radyasyonların yapısı ve özellikleri yavaş yavaş anlaşılabilmiştir.

1932'de James Chadwick nötronu dolayısı ile nötron radyasyonunu keşfetmiştir.

Pozitronlar, müonlar ve pionlar gibi bir dizi başka yüksek enerjili parçacıklı radyasyon, bir süre sonra kozmik ışın reaksiyonlarının bulut odası incelemesi ile keşfedilmiştir. Bundan sonra ise yirminci yüzyılın son yarısı boyunca diğer parçacık radyasyon türleride yapay olarak parçacık hızlandırıcılarda üretilmiştir.

2.1.1. Doğal Radyasyon Kaynakları

Günümüzde, radyasyon insanların yaşam kalitelerine fayda sağlasa da radyasyona maruz kalmanın olumsuz sağlık etkilerini önlemek için özen gösterilmelidir. Buna göre radyasyon kullanımı, maruz kalma seviyesini tahmin etmek için bir indeks olan 'radyasyon dozu' referans alınarak kontrol edilir. "Yapay" radyasyona ek olarak, insanlar ya Dünya'dan ya da uzaydan gelen "doğal" radyasyona maruz kalırlar. 1955 yılında kuruluşundan bu yana, Birleşmiş Milletler Atomik Radyasyon Etkileri Bilimsel Komitesi (UNSCEAR), küresel ve bölgesel radyasyon maruziyetini takip etmekte ve değerlendirmektedir. İnceleme ve değerlendirme sonuçları UNSCEAR raporlarında özetlenmiştir. Son UNSCEAR 2008 raporu, bireysel yıllık ortalama dozlar ve çeşitli kaynaklardan gelen radyasyon aralıkları hakkında veri sağlamaktadır. Doğal radyasyon kaynakları, dış ve iç maruziyetlere neden olan kozmik radyasyon ve karasal radyasyonu içerir. UNSCEAR 2008 raporu doğal radyasyon kaynakları olarak, dış karasal (yani karasal gama ışınları), kozmik, radyasyon soluma ve radyasyon yutmayı dikkate alır.

Karasal radyasyona maruz kalma : Yerkabuğunun bileşimi, önemli bir doğal radyasyon kaynağıdır. Ana katkıda bulunanlar, doğal bozunma sürecinde az miktarda iyonlaştırıcı radyasyon salan doğal uranyum, potasyum ve toryum yataklarıdır. Uranyum ve toryum her yerde bulunurlar. Bu minerallerin izleri yapı malzemelerinde de bulunur, bu nedenle doğal radyasyona maruz kalma hem iç mekanlarda hem de dış mekanlarda meydana gelebilir.

Kozmik radyasyona maruz kalma: Dünyanın dış atmosferi sürekli olarak kozmik radyasyon tarafından bombalanır. Genellikle kozmik radyasyon, uzayda var olan ve evrendeki güneş ve diğer göksel olaylar dahil olmak üzere çeşitli kaynaklardan kaynaklanan hızlı hareket eden parçacıklardan oluşur. Kozmik ışınlar çoğunlukla protonlardır, ancak diğer parçacıklar veya dalga enerjisi olabilir. Bazı iyonlaştırıcı

radyasyonlar dünya atmosferine nüfuz eder ve insanlar tarafından emilir, bu da doğal radyasyona maruz kalmaya neden olur.

Solunum yoluyla maruz kalma: Doğal radyasyona maruz kalmadaki varyasyonların çoğu, toprakta ve ana kayada bulunan radyoaktif mineraller tarafından üretilen radyoaktif gazların solunmasından kaynaklanır. Radon, uranyum-238'in bozunmasıyla üretilen kokusuz ve renksiz bir radyoaktif gazdır. İnert bir gazdır, yani çevreleyen madde ile reaksiyona girmez. Radon reaksiyona girmediği için yerden kolayca yükselebilir ve atmosfere karışabilir. Toron, toryum tarafından üretilen radyoaktif bir gazdır. Radon ve toron seviyeleri, toprak ve ana kayanın bileşimine bağlı olarak konuma göre önemli ölçüde değişir. Havaya salındıktan sonra, bu gazlar normalde atmosferde zararsız seviyelere inerler, ancak bazen bina içinde sıkışıp birikerek bina sakinleri tarafından solunurlar. Ortalama olarak, doğal radyasyona maruz kalmanın en büyük kaynağıdır.

Yutma yoluyla maruz kalma: Eser miktarda radyoaktif mineraller doğal olarak yiyecek ve içme sularının içeriğinde bulunur. Örneğin, sebzeler tipik olarak radyoaktif mineraller içeren toprakta ve yer altı sularında yetiştirilir. Yutulduktan sonra bu mineraller, doğal radyasyona dahili maruz kalmaya neden olur.

Potasyum-40 ve karbon-14 gibi doğal olarak oluşan radyoaktif izotoplar, radyoaktif olmayan izotoplarıyla aynı kimyasal ve biyolojik özelliklere sahiptir. Bu radyoaktif ve radyoaktif olmayan elementler vücudumuzda kullanılır. Dolayısı ile doğal radyoizotoplar bizi sürekli olarak radyasyona maruz bırakır. Aşağıdaki Tablo 2.1, yaklaşık 500 gram farklı gıda ürününde bulunan potasyum-40'tan kaynaklanan radyoaktivite miktarını tanımlar. Becquerel, saniyede bir bozunmaya eşit bir radyoaktivite birimidir.

Tablo 2. 1. Yi	yeceklerdeki 500	gram başına	potasyum-40 i	ceriği (Brodsky.	1978)
		<i>G</i> •				, ,

Gıda	Becquerel
Et	56
Havuç	63
Beyaz Patates	63
Muz	65

İnsan vücudu ayrıca birkaç radyoaktif izotop içerir. Aşağıdaki Tablo 2.2 vücutta doğal olarak bulunan bazı izotopların bir listesini içermektedir.

İzotop	Radyoaktivite
Uranyum	2,3
Toryum	0,21
Potasyum-40	4,000
Radyum-266	1,1
Karbon-14	3,700

Tablo 2. 2. Bazı radyonükliedlerin Bq cinsinden radyoaktiviteleri (Brodsky, 1978)

Genel olarak, kozmik radyasyon yükseklik ve manyetik enlem ile artmaktadır. Karasal radyasyon, konuma bağlı olarak büyük ölçüde değişir. Bu, karasal radyasyona maruz kalmanın topraktaki ve diğer ortamdaki radyonüklid içeriğine ve aynı zamanda insan faaliyetlerine ve uygulamalarına bağlı olduğu anlamına gelir. Özellikle evin yapı malzemesi, tasarım ve havalandırma sistemleri, soluma yoluyla iç maruz kalmaya önemli ölçüde katkıda bulunabilen radon, toron ve bunların bozunma ürünlerinin iç mekan seviyelerini güçlü bir şekilde etkiler. Doğal olarak oluşan bir dizi radyonüklid, vücutta dış ve iç maruz kalınan dozlara yol açar. Çeşitli katkıların bir özeti Tablo 2.3'te sunulmuştur (Wiley and Sons, 1988).

Tablo 2. 3. Doğal radyasyondan elde edilen ortalama yıllık etkin doz

Maruz kalma bileşeni	Yıllık etkin doz (mSv)
Kozmik ışınlar	0,38
Kozmojenik radyonüklidler	0,01
Karasal radyasyon: harici maruz kalma	0,46
Karasal radyasyon: radonsuz dahili maruz kalma	0,23
Karasal radyasyon: Radondan dahili maruz kalma	
Rn-222'nin solunması	1,2
Rn-220'nin solunması	0,07
Rn-222'nin yutulması	0,005
Toplam	2,4

Doğal radyasyon kaynaklarından dünya nüfusuna göre yıllık ortalama dozun 2,4 mSv olduğu tahmin edilmektedir. Bunun üçte biri dış maruz kalma ve üçte ikisi iç maruz kalmadır. Yıllık eşdeğer dozun (1,3 mSv) en yüksek bileşeni, radonun solunması ve kısa ömürlü bozunma ürünlerinden gelmektedir. Kozmik radyasyon ve karasal kaynaklar arasında yaklaşık olarak eşit olarak bölünen harici radyasyon dozu (0,85 mSv) da önemlidir. Geri kalan doz, ⁴⁰K'un yutulmasından, ²²⁰Rn'nun solunmasından ve toprakta bulunan radyonüklidler kaynaklıdır.

2.1.2. Yapay Radyasyon Kaynakları

Atmosferik test : İkinci Dünya Savaşı'nın sonundan 1980'in sonlarına kadar atom silahlarının atmosferik_testleri havaya serpinti adı verilen radyoaktif madde salmıştır. Radyoaktif serpinti yere çöktükçe bunların çoğunluğu çevreyi olumsuz etkilemiştir. Oluşan serpintilerin çoğunun yarı ömrü kısa olduğundan çevrede artık bulunmamaktadır Ancak bazıları bugüne kadar bozunmaya devam etmektedir. İnsanlar ve çevre her yıl söz konusu serpintiden giderek daha küçük dozlara maruz kalmaktadır.

Tıbbi kaynaklar : Radyasyonun tıpta birçok kullanım alanı vardır. En iyi bilinen kullanım alanı, kırık kemikleri tespit etmek ve hastalıkları teşhis etmek için radyasyon barındıran X-ışını cihazlarıdır. Başka bir örnek, kanser gibi hastalıkları teşhis ve tedavi etmek için radyoaktif izotopları kullanan nükleer tıptır. Nükleer tıbbın bu uygulamaları insan sağlığı için son derece önemli bir yer teşkil etmektedir. Röntgen, CT taraması, nükleer tıp ve izotop üreten bir parçacık hızlandırıcı dahil olmak üzere tıbbi radyasyon kaynaklarının örneklerini Şekil 2.1'de gösterilmiştir.

Şekil 2.1. Nükleer tıp uygulamaları için bir örnek (https://www.nrc.gov/about-nrc/radiation/around-us/sources/nat-bg-sources.html)

Endüstriyel Kaynaklar : Radyasyona neden olan ışınımların, yol inşaasında kullanılan nükleer içerikli göstergelerden, fabrikalardaki borulardaki malzeme akışını ölçen yoğunluk ölçerlere kadar çok farklı türde endüstriyel kullanımları vardır. Ayrıca duman dedektörlerinde ve bazı karanlıkta parlayarak yön gösteren çıkış işaretlerinde ve petrol çıkartılan bölgelerdeki rezervleri tahmin etmek için kullanılır. Radyasyon ayrıca büyük, ağır korumalı ışınlayıcıların kullanıldığı sterilizasyon için de kullanılır. Şekil 2.2, nükleer göstergeler, bir duman detektörü ve karanlıkta parlayan çıkış levhası gibi endüstriyel radyasyon kaynaklarının örneklerini göstermektedir.

Şekil 2.2. Radyasyon barındıran bazı endüstriyel kaynakların gösterimi (http://nuclearsafety.gc.ca/eng/resources/radiation/introduction-to-radiation/types-and-sources-of radiation.cfm)

Nükleer yakıt döngüsü : Nükleer enerji santralleri, buhar üreten bir zincirleme reaksiyonu yürütmek için uranyum kullanır ve bu da türbinleri elektrik üretmeye yönlendirir. Nükleer enerji santralleri, normal aktivitelerinin bir parçası olarak, insanları düşük dozda radyasyona maruz bırakabilen, düzenlenmiş seviyelerde radyoaktif madde salabilmektedir. Benzer şekilde, uranyum madenleri, yakıt fabrikasyon tesisleri ve radyoaktif atık tesisleri, halkın radyasyon dozuna katkıda bulunan bir miktar radyoaktivite salar. Şekil 2.3, uranyum madenciliği, yakıt çubukları ve bir nükleer enerji santrali dahil olmak üzere nükleer yakıt döngüsünün örneklerini göstermektedir.

Şekil 2.3. Radyasyon barındıran bazı nükleer yakıt çevrimi elemanlarının gösterimi

Normalde güneş, toprak veya kayalar gibi doğal kaynaklardan gelen iyonlaştırıcı radyasyonu değiştirmek veya azaltmak için yapabileceğimiz çok az şey vardır. Bu tür maruz kalma, hiçbir zaman tamamen risksiz olmasa da, genellikle oldukça düşüktür. Ancak bazı durumlarda, evdeki radon gazı gibi doğal radyoaktivite kaynakları kabul edilemeyecek kadar yüksek olabilir ve azaltılması gerekebilir.

Yapay kaynaklardan ve faaliyetlerden gelen iyonlaştırıcı radyasyon daha dikkatli kontrol edilir. Bu ortamlarda radyasyonun topluma sağladığı yararlar ile insanlara ve çevreye getirdiği riskler arasında bir denge kurulur. Hem çalışanların hem de halkın radyasyon maruziyetini kısıtlamak için doz limitleri belirlenir. Lisans sahiplerinin tüm radyasyon dozlarını sosyal ve ekonomik faktörleri dikkate alarak mümkün olan en düşük seviyede tutmaları gerekmektedir. Ayrıca, radyasyon kullanımının net bir faydası olmalıdır. Örneğin, duman dedektörlerinde radyoaktif izotoplara izin verilir, çünkü duman dedektörleri hayat kurtarır.

2.2. Radyasyon Türleri

Radyasyon, radyoaktif kaynaktan yayımlanan parçacıkların enerjisine bağlı olarak genellikle iyonlaştırıcı radyasyon ve iyonlaştırıcı olmayan radyasyon şeklinde iki sınıfa ayrılabilir. İyonlaştırıcı radyasyon, atomları ve molekülleri iyonlaştıran ve kimyasal bağları kırmak için gerekli olan 10 eV'dan fazla enerji taşımaktadır. Bu enerji miktarı canlı organizmalara zarar verebilecek düzeydedir. İyonlaştırıcı radyasyon kaynağı, sırasıyla helyum çekirdekleri, elektronlar veya pozitronlar, α , β , x, γ veya nötron radyasyonu yayan kaynaklardır. X-ışınları tıbbi radyografi incelemelerinden ve birincil kozmik ışınların dünya atmosferi ile etkileşime girmesinden sonra üretilen ikincil kozmik ışınlarını oluşturan müonlar, mezonlar, pozitronlar, nötronlar ve diğer parçacıklardan elde edilir. Şekil 2.4'te elektomanyetik spektrum gösterilmiştir.

Şekil 2.4. İyonlaştırıcı ve iyonlaştırıcı olmayan radyasyonu gösteren elektromanyetik spektrum

İyonlaştırıcı ve iyonlaştırıcı olmayan radyasyon türleri Tablo 2.4'te verilmiştir. Tablo 2. 4. Radyasyon türleri

2.2.1. İyonlaştırıcı Olmayan Radyasyon

İyonlaştırıcı olmayan radyasyon, bir atom veya molekülden bir elektronu tamamen

çıkarmak için yeterli enerjiyi barındırmayan her çeşit elektromanyetik radyasyonu ifade eder (Moulder, 2014).

İyonlaştırıcı olmayan elektromanyetik radyasyon, maddeden geçerken yüklü iyonlar üretmez. Burada yalnızca uyarılma, titreme veya öteleme için yeterli enerjiye sahip olan radyasyon söz konusudur. İyonlaştırıcı olmayan radyasyon canlılar için önemli bir sağlık riski oluşturmaz. İyonlaştırıcı olmayan radyasyon, iyonlaştırıcı radyasyona göre daha düşük bir frekansa, dolayısıyla daha uzun dalga boyuna sahiptir.

İyonlaştırıcı ve iyonlaştırıcı olmayan radyasyon arasındaki ayrım çizgisi, elektromanyetik spektrumun morötesi kısmında bulunur (yukarıdaki Tablo 2.4'te elektromanyetik spektrum şeklinde gösterilmiştir). Morötesi bandındaki ve daha düşük enerjilerdeki (ultraviyolenin solundaki) radyasyona iyonlaştırıcı olmayan radyasyon, ultraviyole bandının sağındaki daha yüksek enerjilerdeki radyasyona ise iyonlaştırıcı radyasyon denir. İyonlaştırıcı olmayan radyasyon elektronları atomlardan ve moleküllerden uzaklaştırmak için yeterli enerjiye sahip değildir. Bu radyasyon çeşidi maddeleri ısı transferi yapabilir.

İyonlaştırıcı olmayan radyasyon, çevremizde birçok kaynakta bulunur. Şekil 2.4'te belirtilen elektromanyetik spektrum incelediğinde iyonlaştırıcı olmayan radyasyon 5 farklı türe ayrılmaktadır. Bunlar;

- Birçok yayın ve iletişim uygulamasında kullanılan radyo frekansı (RF) radyasyonu
- Ev mutfağında kullanılan mikrodalgalar
- Isı lambalarında kullanılan kızılötesi radyasyon
- Görünür bölge
- Güneşten gelen ultraviyole (UV) radyasyon

Elektromanyetik spekturumunda yer alan iyonlaştırıcı ve iyonlaştırıcı olmayan radyasyona neden olan bileşenlerin dalga boyu, frekans ve enerjilerini gösteren veriler Tablo 2.5'te verilmiştir.

İsim	Dalga boyu	Frekans (Hz)	Foton enerjisi (eV)
Gama ışını	< 0,03 nm	> 30 Hz	> 124 ke V
X-ışını	0,01 nm – 10 nm	30 EHz – 30 P Hz	124 keV – 124 eV
ultraviyole	10 nm - 400 nm	$30 \ PHz - 750 \ THz$	124 eV – 3 eV
Görülebilir ışık	$400 \ nm-750 \ nm$	$750 \ THz - 400 \ THz$	3 eV – 1,7 eV
Kızılötesi	$750 \ nm - 1 \ mm$	$400 \ THz - 300 \ GHz$	1,7 eV – 1,24 meV
Mikrodalga	1 mm - 1 m	$300 \; GHz - 300 \; MHz$	$1{,}24~meV-1{,}24~\mu e~V$
Radyo	$\geq 1 \text{ m}$	\leq 300 MHz	\leq 1,24 μ eV

Tablo 2. 5. Elektromanyetik spektrumdaki bileşenlerin dalga boyuna, frekans ve enerjisine göre değişimi

Radyo dalgaları : Radyo dalgaları elektromanyetik spektrumun en uzun dalgaboyuna sahiptir. Bir futbol sahası uzunluğundan daha uzun olacağı gibi bir golf topu ölçüsünde de olabilmektedir. Radyo, TV ve cep telefonu gibi iletişim araçlarının sinyallerini kapsamaktadır.

Mikro dalgalar : Mikrodalgalar cm seviyesinde dalga boylarına sahiptir. Bu tip radyasyona neden olan dalgalar, maddeleri teşkil eden atom ve moleküllerde titreşim hareketi yaparak ısı enerjisinin oluşmasına sebep olmaktadır. Bu da mikrodalgaya maruz kalan maddelerin ısınmasını sağlamaktadır. Mikrodalgalar, gönderilen sinyalleri bir yerden başka bir yere yönlendirmek için oldukça iyi bir taşıyıcı görevi yapmaktadırlar.

Mikrodalga teknolojisi, noktadan noktaya telekomünikasyon amaçlı çok fazla kullanılmaktadır. Mikrodalgaların sahip oldukları kısa dalga boyları sayesinde, taşınabilir cihazların antenlerinin çok kısa olmasına olanak vermektedir. Bu nedenle mikrodalga frekansları, cep telefonları, telsiz telefonlar ve kablosuz LAN (Wi-Fi) erişimi gibi Ayrıca mikrodalgalar, radyo dalgalarına göre daha kısa boylu ışınlara daha kolay odaklanırlar. Yine bu dalgalar, yaklaşık boyları birkaç cm'yi geçemeyen dalgalarla bildiğimiz radar sistemleri yapısında kullanılmaktadır.

Kızıl ötesi dalgalar : Kızılötesi dalgalar (IR) görünür ışıktan daha uzun dalga boylarına sahip olan elektomanyetik radyasyon (EMR) çeşitidir. Özel olarak yapılmış darbeli lazerlerden 1050 nanometreye (nm) kadar olan dalga boylarının IR'si belirli koşullar

altında insanlar tarafından görülebilse de, insan gözü tarafından genelde algılanamaz. Kızılötesi ışık, görünür spektrumun önerilen kırmızı kenarından 700 nanometreden 1 milimetreye kadar uzanır. Oda sıcaklığı veya buna yakın objeler tarafından yayılan termal radyasyonun çoğu IR dalgalardan oluşmaktadır. Bütün elektromanyetik radyasyonlarda olduğu gibi IR'de ışıma enerjisi taşır ve fotona benzer şekilde hareket eder. IR dalgaları, ısıyı tetikleme özelliğine sahiptir.

Bazen kızılötesi ışınlar, kızılötesi ısıtıcılar gibi ısı üretiminin gerekli olduğu uygulamalarda veya bir hastanın fizik tedaviye ihtiyaç duyduğu terapötik amaçlar için kullanılır. Yakın kızılötesi ışınlar, TV uzaktan kumanda sensörleri ve fotoğrafçılık gibi elektronik uygulamalarda kullanılır. Dalga boyu aralıkları yakın olduğu için uygulamaları görünür ışık uygulamalarına benzer olabilir. Uzak kızılötesi ışınlar daha termaldir. Isı üreten herhangi bir şey uzak kızılötesi radyasyon yayar. 37°C'deki insan vücudu bile yaklaşık 800 nm dalga boyunda kızılötesi radyasyon yayar.

Görünür ışık dalgaları : Işık dalgaları, elektrik ve manyetik alanların titreşimlerinin sonucudur ve bu nedenle bir elektromanyetik (EM) radyasyon biçimidir. Görünür ışık, birçok EM radyasyon türünden yalnızca biridir ve genel elektromanyetik spektrumun çok küçük bir alanını kaplar, ancak ışığı gözlerimizle görebildiğimiz için bizim için özel bir önemi vardır.

Görünür ışık dalgaları, yaklaşık 400 ila 700 nanometre (4,000 ila 7,000 A⁰) arasında dalga boylarına sahiptir. Gözlerimiz, ışığın farklı dalga boylarını gökkuşağı renk tonları olarak algılar. Kırmızı ışık, yaklaşık 700 nm uzunluğunda nispeten uzun dalga boyuna sahiptir. Mavi ve mor ışığın ise 400 nm civarında dalga boyuna sahiptirler. Daha kısa dalga boyuna sahip olanlar daha yüksek frekanslarda titreşir ve daha yüksek enerjilere sahiptir. Kırmızı ışığın frekansı 430 THz civarındayken, mavinin frekansı 750 terahertz'e yakındır. Kırmızı renge sahip ışık fotonları yaklaşık olarak 1,8 elektron volt (eV) enerji taşımaktadır. Mavi renge sahip mavi ışık foton ise yaklaşık olarak 3,1 eV enerji taşımaktadır.

Görünür ışığın EM spektrumundaki komşuları, bir tarafta kızılötesi radyasyon ve diğer tarafta ultraviyole radyasyondur. Kızılötesi radyasyon, kırmızı ışıktan daha uzun

dalgalara sahiptir ve bu nedenle daha düşük bir frekansta salınır ve daha az enerji taşır. Ultraviyole radyasyon mavi veya mor ışıktan daha kısa dalgalara sahiptir ve bu nedenle daha hızlı salınır ve foton başına görünür ışıktan daha fazla enerji taşımaktadır.

Mor ötesi dalgalar : Morötesi dalgalar ya da diğer adıyla ultraviyole (UV) "ışık" bir elektromanyetik radyasyon türüdür. Görünür ışıkla karşılaştırıldığında daha kısa bir dalga boyuna sahiptir. Mor ışık olarakta bilinir ve diğer ışık renklerinden daha kısa dalga boylarına sahiptir. Ultraviyole radyasyon, elektromanyetik spektrum boyunca görünür ışık ve X-ışınları arasında yer alır. UV ışığı, yaklaşık 10 ila 400 nanometre arasındaki bir dalga boyu aralığını kapsar. Ultraviyole radyasyon yaklaşık 800 THz ile 30.000 THz arasındaki frekanslara sahiptirler. Dünya atmosferi , uzaydan gelen UV radyasyonunun çoğunun yere ulaşmasını engeller.

2.2.2. İyonlaştırıcı Radyasyon

"İyonize" kelimesi, nispeten enerjisi yüksek olan elektromanyetik (EMR) dalgaların neden olduğu bir olaydır. Bir başka deyişle elektronun atomdan kopmasını ifade etmektedir. Yüksek enerji barındıran EMR dalgaları spektrumun iyonlaştırıcı kısmını oluşturmaktadır. X-ışınları, gama şınları gibi yüksek enerjili EMR dalgaları bu tip radyasyona örnektir.

Yeterince yüksek enerjili radyasyon atomlarını iyonize edebilmektedir. İyonizasyon, bir elektronun atomun bir elektron tabakasından kurtulduğunda meydana gelir ve bu da atomun net bir pozitif yüke sahip olmasını sağlamaktadır.

10 elektron voltun (eV) üzerinde olan fotonlar ve parçacıklar iyonlaştırıcı özelliğe sahiptir. Herhangi bir radyoaktif malzeme veya nükleer süreç nedeni ile ortaya çıkan parçacık radyasyonu, iyonlaşmaya yetecek kadar yüksek enerji taşımaktadır. Bu tip radyasyonun günümüzde nükleer teknoloji uygulamalarında sıklıkla kullanılmaktadır. Ancak doğru şekilde kullanılmadığında canlılar için tehlikeli olmaktadır. İyonlaştırıcı radyasyon türüne göre 5'e ayrılmaktadır. Bunlar X-ışınları radyasyonu, alfa parçacık radyasyonu, beta parçacık radyasyonu, gama ışını radyasyonu ve nötron radyasyonudur.

2.2.2.1. X-Işınları

X-ışınları bir elektromanyetik radyasyon (EMR) biçimidir. Temel fiziksel özellikleri, elektromanyetik spektrumun daha bilinen bileşenleri olan görünür ışık, kızılötesi radyasyon ve ultraviyole radyasyon ile aynıdır. Işık hızında hareket ederler. X-ışınları diğer EMR çeşitleri gibi dalga ve parçacık özelliğine sahiptir. Bu ikili doğa, tüm radyasyon ve madde biçimlerinin bir özelliğidir ve kuantum mekaniği teorisi tarafından kapsamlı bir şekilde tanımlanmaktadır.

X-ışınları, dalga boyu yaklaşık olarak 10^{-9} m'den düşük olan, frekansı yine yaklaşık olarak $3x10^{17}$ Hz, yaklaşık olarak enerjisi 1,240 eV'den büyük olan elektromanyetik dalgalardır. Bir X-ışını fotonu, bir atomla çarpıştığı zaman, atom fotonun enerjisini soğurabilir veya atomun elektronunu daha yüksek yörünge seviyesine yükseltebilir ya da foton çok fazla enerjiye sahipse, atomdan bir elektronu kopararak iyonlaşmış atoma neden olabilir.

Yüksek atom numarasına sahip elementlerin atomlarının yörünge elektronları arasında daha büyük enerji farkı mevcuttur. Bu nedenle atomun bir X-ışını fotonunu soğurma olasılığı daha yüksektir. Bu ışınların malzemelere nüfuz etme kabiliyetleri, atomik ölçüdeki dalga boyları, X-ışını fotonlarının barındırdığı yüksek enerjisi sayesinde endüstriyel, tıbbi ve bilimsel uygulamalarda tercih edilmesini sağlar. En basit moleküllerin etkileşimlerinin incelenmesinden, insan beyninin yapısına kadar birçok alan için özel X-ışını kaynakları, dedektörler ve analiz teknikleri geliştirilmiştir.

2.2.2.2. Alfa Radyasyonu

İki proton ve iki nötrona sahip olan helyum çekirdeği aslında alfa radyasyonu olarakta bilinen alfa parçacıklarıdır. Sahip olduğu elektriksel yükler ve kütleleri nedeniyle madde ile etkileşime girerler. Radyoaktif bozunmadaki üretim mekanizmaları nedeniyle, alfa parçacıkları genellikle yaklaşık 5 MeV'lik bir kinetik enerjiye ve ışık hızının %4'ü civarında bir hıza sahiptir. Bunlar, parçacık radyasyonunun oldukça iyonlaştırıcı bir formudur ve genellikle düşük nüfuz etme derinliğine sahiptirler.

Bununla birlikte, fisyondan gelen daha uzun menzilli alfa parçacıkları, yaklaşık olarak üç kat daha yüksek enerjiye sahip olmakla beraber daha derine nüfuz edebilirler. Kozmik ışınlarda ise durum farklıdır. Helyum çekirdekleri kozmik ışınların %10-12'sini oluşturur ve nükleer süreçler sonunda ortaya çıkan alfa parçacıklarından daha yüksek enerjiye sahiptirler. Dolayısı ile nüfuz etme derinlikleri yüksektir. Bu nedenle canlı sağlığı için çok daha tehlikelidir.

Yüksek enerjili alfa parçacıkları, vücuda ve hatta ince metal plakalara nüfuz edebilir. Yüksek derecede nüfuz etme derinliğine sahip alfa parçacıklarına örnek olarak, 2003). radyum, radon ve polonyum izotopları verilebilir (Beiser Alfa bozunmasında yayılan alfa parçacığının enerjisi, emisyon sürecinin yarı ömrüne kısmen bağlıdır. Çoğu alfa parçacığı 3 ila 7 MeV arasında enerjiye sahiptir. 5 MeV'lik tipik bir kinetik enerji ile yayılan alfa parçacıklarının hızı, ışık hızının %5'i olan 15.000 km/s'dir. Bu enerji, tek bir parçacık için önemli miktarda enerjidir, ancak yüksek kütleleri nedeni ile, alfa parçacıklarının diğer yaygın radyasyon türlerinden, daha düşük bir hıza sahip olduğu anlamına gelir. Yükleri ve büyük kütleleri nedeniyle, alfa parçacıkları malzemeler tarafından kolayca soğurulur ve havada yalnızca birkaç santimetre hareket edebilirler. Kağıt mendil veya insan derisinin dış katmanları tarafından emilebilirler. Yaklaşık 40 mikrometre kalınlığıdaki deriye nüfuz edebilirler (Christensen, 2014).

Alfa bozunmasından sorumlu olan temel etkileşimler, elektromanyetik kuvvet ile nükleer kuvvet arasındaki dengedir. Alfa bozunması, her ikisi de pozitif elektrik yüküne sahip olan ancak nükleer kuvvet tarafından kontrol altında tutulan, alfa parçacığı ile çekirdeğin geri kalanı arasındaki Coulomb itmesinden kaynaklanır. Klasik fizikte, alfa parçacıkları potansiyel kuyusundan kaçmak için yeterli enerjiye sahip değildir (Krane, 1988).

Bununla birlikte, kuantum tünelleme etkisi, alfaların nükleer kuvvetin üstesinden gelmek için yeterli enerjiye sahip olmasalar bile kaçmalarına izin verir. Bu, alfa parçacığının zamanının bir kısmını çekirdekten uzaktaki bir bölgede geçirmesine izin veren maddenin dalga doğası tarafından sağlanır ki itici elektromanyetik kuvvetten gelen potansiyel, nükleer kuvvetin çekiciliğini tamamen telafi eder. Bu noktadan alfa parçacıkları kaçabilir (Krane, 1988).

2.2.2.3. Beta Radyasyonu

Beta bozunması ya da beta radyasyonu, bir beta parçacığının (hızlı enerjik elektron veya pozitron) bir atom çekirdeğinden yayıldığı ve ilk durumdaki çekirdeği aynı çekirdeğin bir izobarına dönüştüğü radyoaktif bozunmadır. Örneğin, bir beta bozunması olayı, bir antinötrinonun eşlik ettiği ve bir elektronun serbest kalması ile nötronu protona dönüştürebilir. Diğer bir durumda, pozitron emisyonudur. Beta parçacığı ve onunla ilişkili antinötrino, beta bozunması gerçekleşmeden önce çekirdek içerisinde yer almaz. Beta bozunması ile, kararsız durumdaki atomlar daha kararlı olan bir protonnötron oranı elde ederler (Konya ve Nagy, 2012).

Nükleonlar, yukarı kuarklardan ve aşağı kuarklardan oluşur ve zayıf kuvvet, bir kuarkın, bir elektron/antinötrino veya pozitron/nötrino çiftinin meydana gelmesini sağlayan bir W bozonu emisyonu ile gerçekleşir (Bijker ve Santapinto, 2015). Örneğin, iki aşağı ve bir yukarı kuarktan oluşan bir nötron, bir aşağı ve iki yukarı kuarktan oluşan bir protona bozunur.

Bunun dışında çekirdeğin atomun yörünge elektronlarından birini yakalaması sonucu oluşan elektron yakalama olayı olarak bilinen bir olay daha vardır. Kararsızlık proton sayısının nötron sayısından fazla olmasından kaynaklı ise ana çekirdek yörünge elektronlarından birini yakalar ve bir nötrino yayınlanır. Bu olaya da elektron yakalama denir. Bu üç olay aşağıdaki gibi ifade edilmektedir (Basdevant vd, 2005).

- β^{-} bozunması veya elektron yayınımı $_{Z}X^{A} \longrightarrow _{Z+1}Y^{A} + e^{-} + v^{-}$
- β^+ bozunması veya pozitron yayınımı zX^A \longrightarrow z-1Y^A + β^+ + ν^-
- Elektron Yakalanması $zX^{A} + e^{-} \longrightarrow z_{-1}Y^{A} + v^{-}$

Beta radyasyonu maddeye alfa radyasyonundan fazla, ama gama radyasyonundan daha az nüfuz etmektedir. Beta radyasyonu, birkaç santimetre kalınlığıdaki plastik veya birkaç milimetre kalınlığıdaki metal ile durdurulabilir.

2.2.2.4. Gama Radyasyonu

Gama radyasyonu olarak da bilinen bir gama ışını atom çekirdeğinin radyoaktif bozunmasından kaynaklanan nüfuz edici bir elektromanyetik (EM) radyasyon şeklidir. En kısa dalga boylu EM dalgalar arasındadır. Dalga boyları yaklaşık olarak 10⁻¹⁰cm'dir. Gama ışınları foton olarak yayımlanmaktadır. Radyoaktif bozunmadan nedeni ile oluşan gama ışınları, birkaç keV'den yaklaşık 8 MeV'e kadar enerji aralığındadır.

Dünya'dan kaynaklanan doğal gama ışınları kaynakları, çoğunlukla radyoaktif bozunmanın ve kozmik ışın parçacıklarıyla atmosferik etkileşimlerden kaynaklanan ikincil radyasyonun bir sonucudur. Bununla birlikte, çekirdek etrafındaki elektron hareketlerinden dolayı gama ışınlarına neden olan karasal gama ışını gibi doğal kaynaklar da bulunmaktadır. Önem arzeden yapay gama ışınları kaynakları, nükleer reaktörlerde meydana gelen nükleer süreçler, fisyon, füzyon gibi yüksek enerji fiziği deneylerinden kaynaklanmaktadır. Gama ışınları iyonlaştırıcı radyasyon sınıfındadır. Bu sebeble canlılar için tehlikelidir. Yüksek nüfuz edici güçleri sebebi ile kemik iliğinden iç organlara kadar zarar verebilirler. Alfa ve beta ışınlarının tersine, insan vücundan rahatlıkla geçerler. Bu sebeble, etkili bir radyasyon zırhlama gerektirir.

Herhangi bir yolla uyarılmış bir çekirdek, bozunma sonrası uyarılmış seviyede kalabilir. Uyarılmış durumdan kurtulmak için çekirdek gama ışıması yayınlamak zorunda kalabilmektedir.Şekil 2.5'te bu sürece ait bir örnek sunulmuştur.

Şekil 2.5 Gama bozunması sürecine ilişkin bir örnek (Bilge, 1985)

Foton enerjisi iki enerji seviyesi arasındaki farka eşittir.

$$\mathbf{E}\boldsymbol{\gamma} = \mathbf{E}_1 - \mathbf{E}_2 \tag{2.2}$$

2.2.2.5. Nötron Radyasyonu

Nötron Sir James Chadwick tarafından 1932 yılında keşfedilmiştir. Bu keşfinden dolayı Sir James Chadwik1935 yılında Nobel ödülü almıştır. Aslında nötronun keşfedilmeden önce birkaç bilim insanı atom çekirdeği içindeki bu parçacığa atıfta bulunmuş ancak tam olarak ne olduğunu ispat edememişlerdir. Örneğin 1920 yılında Rutherford, 1930 yılında Walter Bothe ve 1931 yılımda Madam Curie nötronun varlığından söz eden ünlü bilim insanlarıdır. Ancak nötronun keşfedilmesi 1932 yılında gerçekleşmiştir.

1930'da Almanya'da Walther Bothe ve Herbert Becker, polonyumdan yayılan çok enerjik alfa parçacıklarının belirli hafif elementler, özellikle berilyum, bor veya lityum üzerine düsmesi durumunda, alışılmadık derecede nüfuz eden bir radyasyon ürettiğini bulmuştur. İlk başta bu radyasyonun bilinen tüm gama ışınlarından daha fazla nüfuz etmesine rağmen gama radyasyonu olduğu düşünülüyordu ve deneysel sonuçların ayrıntılarını bu temelde yorumlamak çok zordu. Bir sonraki önemli katkı 1932'de Irène Joliot-Curie ve Frédéric Joliot tarafından yapıldı. Bu bilinmeyen radyasyonun parafine veya hidrojen içeren herhangi bir bileşiğe düşmesi durumunda çok yüksek enerjili protonları fırlattığını gösterdiler. Bu, yeni radyasyonun varsayılan gama ışını doğasıyla kendi içinde tutarsız değildi, ancak verilerin ayrıntılı nicel analizinin böyle bir hipotezle uzlaştırılması giderek zorlaştı. Sonunda 1932'de fizikçi James Chadwick, gama ışını hipotezinin savunulamaz olduğunu gösteren bir dizi deney yapmıştır. Aslında keşfedilen yeni radyasyonun yaklaşık olarak protonun kütlesine sahip yüksüz parçacıklardan oluştuğunu öne sürdü. Bu tür yüksüz parçacıklar sonunda nötron latince nötr ve Yunanca -on eki eklenerek (elektron ve proton ismini hatırlatması amacı ile) nötron olarak isimlendirilmiştir.

Nötron, elektriksel olarak sıfır yüke sahip ve kütlesi 939.573 MeV/ c^2 (1.6749×10⁻²⁷ kg⁻ bir protondan biraz daha fazla) olan atom altı bir parçacıktır. 1/2 spine sahiptir. Antiparçacığına antinötron denir. Nötron, tıpkı proton gibi bir nükleondur.

Çekirdeğin dışında, serbest nötronlar kararsızdır ve ortalama ömrü 885,7±0,8 saniyedir (yaklaşık 15 dakika), bir elektron ve antinötrino yayarak bir protona dönüşerek bozunurlar.

$$n \to p + e^- + v^- \tag{2.3}$$

Nötron, dört temel etkileşim olan elektromanyetik, zayıf nükleer, güçlü nükleer ve kütle çekimi etkileşimlerinin tümü aracılığıyla etkileşime girer. Nötronun net yükü sıfır olmasına rağmen, elektromanyetik olarak iki şekilde etkileşebilir: birincisi, nötronun manyetik momenti protonla aynı mertebededir. İkincisi, elektrik yüklü kuarklardan oluşur. Bu nedenle, elektromanyetik etkileşim, derin elastik olmayan saçılmada ve manyetik etkileşimlerde nötron için öncelikle önemlidir (Curie vd., 1932). Nötron, beta bozunması yoluyla bir proton, elektron ve antinötrinosu ile zayıf etkileşimi gerçekleştirir. Ancak kütle çekim kuvveti o kadar zayıftır ki çoğu parçacık fiziği deneyinde ihmal edilebilir.

Nötronlar için en önemli kuvvet güçlü etkileşimdir. Bu etkileşim nötronun 3 kuarkının (bir yukarı kuark, iki aşağı kuark) tek bir parçacık halinde bağlanmasından sorumludur. Güçlü nükleer kuvvet, çekirdeklerin bağlanmasından da sorumludur. Nötronlar maddeden geçerken nükleer kuvvet başrol oynar. Yüklü parçacıkların veya fotonların aksine, nötron atomları iyonize ederek enerji kaybedemez. Aksine, nötron, bir atom çekirdeği ile kafa kafaya çarpışma yapana kadar kontrolsüz bir şekilde yoluna devam eder. Bu nedenle nötron radyasyonu son derece nüfuz edici ve tehlikelidir (Greene, 1986).

Çoğu atomun çekirdeği (yalnızca tek bir protondan oluşan hidrojen hariç) proton ve nötronlardan oluşur. Nötron sayısı bir elementin izotopunu belirler. Örneğin, karbon-12 izotopunun 6 protonu ve 6 nötronu varken, karbon-14 izotopunun 6 protonu ve 8 nötronu vardır. İzotoplar, atom numaraları aynı kütle numaraları farklı olan elementlerdir. Bir nötron, baryon olarak sınıflandırılır ve iki aşağı bir yukarı kuarktan oluşur (Ji, 1995).

Nötronun nasıl bir parçacık olduğunu anlayabilmek için bilinmesi gereken temel özellikleri vardır. Bunlardan en önemli özelliklerden biri nötronun ortalama yaşam

ömrüdür. Serbest haldeki bir nötronun yaşam ömrü ortalama 10-11 dakika civarındadır. Burada bir nötron bir proton ve antinötrinoya dönüşür. Güneş sistemimizden yayılan diğer radyasyon türleri ile nötronlar karşılaştırıldığında ise birincil nötronların azlığı görülmektedir. Güneş sisteminden yayılan ve dünya çevresine ulaşan nötronlar madde ile etkileşime girer. Bu etkileşim ikincil nötronların oluşmasına ve sayılarının hızlı bir şekilde artmasına olanak sağlar. Bu olay için örnek vermek gerekirse uzay araçlarında radyasyondan korunmak için birçok zırh malzemesi radyasyon kalkanı olarak kullanılmaktadır. Bu yapısal zırh malzemesindeki yüklü parçacıklar birincil nötronları yavaşlatmakta, ikincil nötronların oluşmasına neden olmaktadır. Nötronlar yüksüz oldukları için de etkileşimde görüntülenmeyebilirler. Ama bu nötronları nüfuz alanı oldukça yüksektir. Dolayısı ile oluşan radyasyonda toplam doz miktarına katkıları yüksektir.

Yeryüzündeki radyoaktif nötron kaynakları enerjisi 10 MeV'e kadar olan nötron üretebilir. Uzayda ise nötron enejisi birkaç TeV mertebesine ulaşabilmektedir. Nötron enerjisinin yüksek olması sadece dozimetri için önemli değildir. Aynı zamanda yüksek enerjili nötronları canlılara ve özellikle insanda meydana getirdiği biyolojik etkiyi de anlamamıza yardımcı olur.

Nötronlar yüksüz oldukları için, nötronlar ile eksi yüklü elektronlar ya da artı yüklü protonlarla etkileşim içine girmezler. Bu özellikten faydalanarak atom çekirdeği nötronlarla bombardıman edilebilir ve maddenin çekirdeğinde bir değişim olabilir. Çekirdek, bir nötron soğurduğunda daha büyük bir kütleye sahip olabilmektedir. Genellikle nötron soğuran bir çekirdek kararsız hale gelir ve ışıma yapabilir. Bu süreç bozunmaya neden olur. Işıma yapma olayına ise radyasyon denir. Günümüzde özellikle teknolojide kullanılan radyo izotoplar, nötron bombardımanı yoluyla üretilmektedir. Nötronlar uranyum, plütonyum, toryum gibi ağır atomların çekirdekleriyle çarpışmalarının bir sonucu olarak fisyon olayı meydana gelmekte ve çok büyük bir nükleer enerji açığa çıkmaktadır. (Murray, 2000).

Nötronlar elektriksel yüklü olmadıklarından nükleer ve çekirdek kuvvetleri ile etkileşime girmezler. Bu nedenden dolayı çekirdeğe yaklaştıkça karşılaşmaları gereken Coulomb engelinden etkilenmezler. Yüksüz olmaları nedeni ile doğrudan madde etkileşimi olmasa

bile yüklü parçacıkların serbest kalmasına neden olabilmektedir. İkincil olarak ortaya çıkan bu parçacıklar, maddenin atomları ile tekrar etkileşime girerek iyonlaşmaya neden olabilmektedir. Dolayısı ile nötronlar yüksüz olmalarına rağmen radyasyona neden olmaktadır. Bu özelliği nedeni ile "Dolaylı Radyasyon İyonlaştırıcı" kategorisinde değerlendirilmektedir (L'Annunziata, 2003).

Nötronların madde atomları ile etkileşmesi onların çok düşük enerjilerde bile yüksek verimlilikte tespitini sağlamaktadır. Nötronları yavaşlatmak ve daha kolay tespit edebilmek için kendi kütlesine yakın olan elementler kullanılmaktadır. Meydana gelen çarpışmaların etkisi ile nötronlar enerjilerinin büyük kısmını çarpıştıkları parçacıklara aktarabilirler. Nötronlar aşağıda belirtilen enerjilere göre sınıflandırılmaktadır.

Yüksek enerjili nötronlar: 20 MeV üzerinde enerjiye sahip olan nötronlardır. Uzaydaki biyolojik etkisi konusunda belirsizliğin en fazla olduğu nötronlardır. Hızlı nötronlar: Genellikle enerjileri 0,8-20 MeV arasında olan nötronlardır. Bunlar fisyon kaynakları tarafından yayımlanır. Yavaş nötronlar: Genellikler enerjileri 0,5 eV ile 1 MeV arasındadır. Nötronun etkileşime girdiği çekirdek nükleer yapıya sahiptir. Bu tür nötronların atom ile etkileşime girme olasılığı yüksektir. Epitermal nötronlar: Enerjileri 0,025 eV ile birkaç yüz eV arasındadır. Bunlar termal ile yavaş nötronların geçiş bölgesini temsil eder. Nötron ile etkileşime giren rezonans durumlar ortaya çıkmaya başlar. Bir sonraki enerji aralığında rezonans durumlar önem arz etmektedir. Termal nötronlar: Enerjileri yaklaşık olarak 0,025 eV civarındadır. Atom çekirdekleri çarpışan parçacıktan daha yavaş hareket ediyorsa enerji alır veya daha hızlı hareket ediyorsa enerji kaybeder. Bu sürekli yavaşlama ve hızlanma nötron enerjisinin merkezlenmiş bir dağılıma neden olur. Büyük olasılıkla bu enerji termal enerji kabul edilir. Bazı materyallerde termal nötronların soğurulması ile gama parçacıklarının oluşumuna neden olur. Termal nötronların çekirdek etrafında çok zaman harcaması nedeni ile yakalanma olasılığı daha yüksektir (Issa vd., 2018). Soğuk nötronlar: Enerjileri 0,12 ile 12 meV arasındadır. Ultra soğuk nötronlar: Enerjisi 300 neV altında olan nötronlardır (L'Annunziata, 2003).

Nötronlar, Tablo 2.6'da gösterildiği gibi kinetik enerjilerine, hızlarına ve dalga boylarına göre sınıflandırılabilir.

Tablo 2. 6. Enerjilerine göre nötron türlerinin bazı özellikleri

Nötronlar	Enerji aralığı	Dalga boyu [Å]	Hız [m/s]
aşırı soğuk	\leq 300 neV	≥ 500	≤ 8
çok soğuk	300 neV - 0,12 meV	52,2 - 26,1	7,5 – 152
soğuk	0,12 meV - 12 meV	26,1-2,6	152 - 1515
termal	12 meV - 100 meV	2,6-0,9	1515 - 4374
epitermal	100 meV - 1eV	0,9 - 0,28	$4374 - 13,8 \ 10^3$
orta düzey	1eV - 0,8 MeV		
hızlı	> 0,8 MeV		

Nötronun madde ile etkileşme ihtimali nötronun enerjisi azalmaya başladıkça artar. Nötronları durdurmak veya yavaşlatmak için kullanılan maddelere moderatör denilmektedir. Sözü edilen moderatör özellikteki malzemelerin, nötron yakalama eğilimi yüksek olmalıdır. İçerisinde hidrojen içeren parafin ve su gibi malzemeler yoğun olarak kullanılmaktadır (Chanthima vd., 2017).

Nötronlar enerjilerine göre madde atomları olarak birçok kez birbirinden farklı etkileşme meydana getirebilmektedir. Nötronların çekirdek ile etkileşmelere başlayabilmesi için çekirdeğe olan mesafesinin yaklaşık olarak 10⁻¹³ cm olmalıdır. Nötronlar çekirdekle yakınlaştıklarında yüklü parçacıklarda olduğu gibi Coulomb engelini aşma zorunluluğu yoktur (Leo, 1987). Nötronların madde ile etkileşmesi sonucu oluşan reaksiyonların toplam tesir kesitini ifade etmek için meydana gelen bütün etkileşmelerin tesir kesitlerinin toplamının alınması gerekir. Bu etkileşmelerin en önemlileri elastik saçılma, inelastik saçılma, nötron yakalanması, nükleer reaksiyonlar ve fisyondur.

2.3. Radyasyonun Canlılar Üzerindeki Etkisi

Radyasyona maruz kalmak canlılara ciddi zarar verebilir. Radyasyonun yüksek dozlarına maruz kalmak cilt yanıkları, saç dökülmesi, iç organ yetmezliği ve ölümle birlikte Akut Radyasyon Sendromuna (ARS) sebep olmaktadır. Radyasyona maruz kalmak kanser gibi
hastalıklara ve genetik hasar olasılığının oluşmasına veya artmasına neden olabilir (Hoong, 2003).

Canlı hücrelerdeki DNA, radyasyondan ve özellikle iyonlaştırıcı radyasyondan olumsuz olarak etkilenmektedir. Ayrıca canlıların iyonlaştırıcı radyasyona maruz kalması canlılarda kanser riskini artırır. Bu nedenle iyonlaştırıcı radyasyon canlılarda ciddi hasarlara neden olmaktadır. İyonlaştırıcı radyasyonun kansere veya farklı ciddi bir tahribata neden olma olasılığı, radyasyonun soğurulan miktarına bağlıdır ve radyasyon tipinin zarar verme eğiliminin (eşdeğer doz), hedef organizma veya dokunun duyarlılığının (etkili doz) fonksiyonudur. İyonize radyasyon türleri içerisinde alfa veya beta parçacıkları daha çok üst dokulardan iç tarafa geçemezken, nötronlar yüksüz olmaları nedeni ile dokuların iç taraflarına kadar ilerleyerek canlılar üzerinde daha büyük bir tahribata yol açarlar. Bunun yanısıra, iyonize radyasyonun sebeb olduğu hücrelerde kanser oluşma riskinin ve ihtimalinin tam olarak hesaplanması hala iyi anlaşılamamıştır. Şu anda öne sürülen görüşler, Hiroşima ve Nagazaki'nin atom bombalarından ve nükleer kazalarının ardından radyasyona maruz kalan toplumun takip edilmesi ile elde edilen nüfusa dayalı datalar yardımı ile belirlenmektedir (Hoong, 2003).

2.4. Radyasyon Zırhlama

Geleneksel kömüre dayalı enerji yapısı çevre kirliliğine ve ekolojik yıkıma neden olurken, enerji ve çevre sorunları da sürdürülebilir kalkınmanın en büyük sosyal ve ekonomik kısıtları haline gelmiştir. Büyük miktarda enerjiyi bünyesinde barındıran nükleer enerji gibi temiz enerjiye daha fazla önem verilmiştir. Nükleer enerji, çevrenin korunmasını dikkate alarak sera gazı emisyonu sağlamasa da, yüksek düzeyde atık kullanılmış nükleer materyal oluşturur. Bunlar emisyonları veya yüksek enerjili elektromanyetik dalgalar üretebilmektedir. Dünya çapında toplam kurulu gücü yaklaşık 377 gigawatt olan 443 nükleer güç ünitesi aktif olarak kullanılmaktadır (Singh vd., 2014).

Radyasyonun sahip olduğu yüksek enerji nedeni ile, canlı organizmalara etki etme yetenekleri yanında iyonlaştırma potansiyelleri nedeni ile rahatlıkla dokulara nüfuz ederler. Bu nedenle radyasyondan olabildiğince maksimum derecede korunmak gerekir. Radyasyona karşı korunmanın öncelikli amacı, etki ettiği canlı organizmalarda sebep

olduğu olumsuzlukların tamamen önüne geçmek veya minimum düzeye düşürmek üzerine kuruludur.

Normal olarak, kullanılmış nükleer yakıt farklı radyoaktif izotoplar içerir ve bu radyoaktif izotopların yarı ömürleri, on binlerce yıl olabilmektedir. Ayrıca nükleer atık, birçok nötron emisyonunun eşlik ettiği alfa, beta, gama, proton ve ikincil gama partikül emisyonlarını üretebilir. Bu nedenle, nükleer endüstrinin güvenilir işleyişini ve sürdürülebilir gelişimini sağlamak için radyasyona karşı koruyucu malzemelerin araştırılması ve geliştirilmesini teşvik etmek zorunlu hale gelmektedir (Issa vd., 2018). Şekil 2.6'da radyasyon türüne göre kullanılabilecek zırh malzemelerinin kalınlığını temsil eden bir örnek verilmiştir.

Şekil 2.6. Radyasyon türüne göre uygulanabilen zırhlama malzemeleri (https://www.afad.gov.tr/kbrn/radyasyon-kaynaklari)

Radyasyona maruz kalma, aşağıdaki etkenlerin bir bileşimi olarak Şekil 2.7'de gösterilmiştir.

Şekil 2.7. Radyasyon maruziyetini etkileyen temel faktörler. (https://www.afad.gov.tr/kbrn/radyasyon-kaynaklari)

Bunlar;

Zaman : Radyasyondan etkilenme süresinin azaltılması, radyasyon maruziyetini orantılı olarak azaltır.

Mesafe : Radyasyon kaynağı ile aradaki mesafenin artması radyasyon maruziyetini azaltır.

Zırhlama : Radyasyon kaynakları, radyasyonun enerjisini soğuran katı veya sıvı bir malzeme ile korunabilir. Zırhlama terimi, radyasyonu canlılar için güvenli bir seviyeye düşürmek için radyasyona neden olan bir radyasyon kaynağının çevresine yerleştirilen materyalin yayılan radyasyonu soğurması için kullanılmaktadır.

Tehlikeli ışınların dış ortama geçmesinin önlenmesi için radyasyon kaynağını barındıran tesislerin radyasyona karşı yalıtılması gerekir. Bir zırhlayıcı malzemenin tasarımı, imalat kolaylığı, maliyeti ve ağırlığına ek olarak radyasyon tipi, kaynağın aktivitesi ve doz hızı gibi faktörlere büyük ölçüde bağlıdır. Çimentolu malzemeler veya tungsten, hastane odalarının, nükleer santrallerin ve X-ışını, γ-ışını veya nötron parçacığı üretim aletlerini barındıran hızlandırıcıların duvarlarında ve çatılarında kurşun içermeyen radyasyondan korunma malzemeleri olarak geliştirilmiştir.

2.4.1. Gama Radyasyon Zırhlama

Günümüzde radyasyon kaynaklarının kullanımında teknolojik gelişmelere paralel olarak artış olmuştur. Bu kaynakların faydalarına rağmen, radyasyona maruz kalınması halinde meydana gelebilecek tehlike veya tahribatlar da dikkat edilmesi gereken bir sorundur.

Nükleer santrallerin sayısındaki artış, nükleer silahların savaşlarda kullanılma olanakları, radyasyon yayan cihaz ve kullanılan radyoizotoplardaki artış dikkate alındığında radyasyon maruziyetini engellemek veya azaltmak için daha etkin önlemlerin alınması gerektiği açıktır. Bu riskler nedeni ile radyasyondan koruyucu malzemeler ve radyasyondan korunmaya yönelik tasarımlar üzerine yapılan çalışmalar da artmıştır (Sukesh vd., 2021).

Günümüzde radyasyona neden olabilecek nükleer içerikli uygulamalardan vazgeçmek mümkün değildir. Dolayısı ile radyasyonun neden olduğu tahribatları minimuma inderecek olan koruma tedbirlerinin alınması gerekmektedir. Radyasyondan korunmada temel fikir, radyasyona olabildiğince az maruz kalmaktır. Makul Ulaşılabilecek Kadar Düşük (ALARA) ilkesi, herhangi bir radyoaktif kaynaktan yayılan ve maruz kalan dozun en aza indirilmesi gerekliliğini ifade eder (Joseph, 2020).

Gama radyasyondan koruyucu malzemeler genellikle yüksek atom numarasına (Z) sahip elementler içerir. Çünkü kütle azaltma katsayıları koruyucu malzemedeki elementlerin Z'si arttıkça artar. Özellikle düşük enerjili fotonlar için yüksek Z içeren elementlerde fotoelektrik etkileşimler baskındır ve yüksek Z'li elementler, yüksek enerjili fotonlar için daha fazla çift oluşum etkileşimi sağlar. Yüksek Z etkisi nedeniyle kurşun, tıbbi radyoloji bölümlerinde koruyucu bir malzeme olarak yaygın bir şekilde kullanılmaktadır.

Kurşun bazlı koruyucu malzemeler, klinik personel tarafından X- ışını görüntü kılavuzluğunda girişimsel radyoloji prosedürleri sırasında da kullanılır. Ancak kurşun son derece zehirlidir ve ciddi sağlık sorunlarına neden olabilir. Bunun dışında, polimer matrisli kompozitler hafif, uyumlu, uygun maliyetli olmanın yanı sıra kurşunsuz olacak şekilde tasarlanabilmektedir ve potansiyel olarak X-ışınlarını önemli ölçüde azaltabilir. Beton, çimentolu malzemeler veya tungsten gibi diğer matrisler, hastane odalarının, nükleer santrallerin ve X-ışını, γ-ışını veya nötron parçacığı üretimini barındıran hızlandırıcıların duvarlarında ve çatılarında kurşun içermeyen radyasyondan korunma malzemeleri olarak geliştirilmiştir.

Nükleer radyasyon zırhlama malzemesi, nükleer reaktörler ve parçacık hızlandırıcılar gibi nükleer tesislerde önemli hassas altyapı bileşenidir. Bu nedenle radyasyon kalkanı malzemeleri yüksek etkili koruma özelliklerine sahip olmalıdır. Genellikle koruyucu malzemeler, yüksek sıcaklık, korozyon vb. ile oldukça zorlu ortamlarda uzun süre hizmet vermek zorundadır. Ayrıca, koruyucu malzemeler birbirleriyle etkileşimden dolayı sürekli radyasyondan zarar görebilir (Temir vd., 2021).

Zırhlama dizaynında tercih edilecek malzeme radyasyonun türüne ve enerjisine göre farklılık göstermektedir. Alfa radyasyonu ince bir kağıtla bile durdurulabilirken, daha fazla nüfuz edici olan beta radyasyonun ince bir alüminyum tabaka ile kaplamak yeterlidir. Radyasyon kaynağının enerjisine bağlı olarak, gama radyasyonu nüfuz etmesi beta radyasyonundan 100 kat, alfa radyasyonundan 10.000 kat daha fazladır. Bu kadar yüksek nüfuz etme derinliğine sahip olan elektromanyetik radyasyonun durdurulması

zırhlama amacı ile tasarlanmış materyallerin kullanımı ile sağlanabilir. Bazı kaynakların yaydığı radyasyon o kadar güçlüdür ki, uzun mesafelerden tespit edilemezse bile etkisine maruz kalınabilir. Şiddetli radyoaktif etkilerden ancak radyasyonu azaltmak için güçlü bir zırhlama ile korunabilir(Wei vd., 2021; Temir vd., 2021).

Geçtiğimiz yüzyılda, iyonlaştırıcı radyasyon, radyasyon tıbbı, nükleer enerji endüstrisi, havacılık keşif endüstrileri ve nükleer araştırma laboratuvarları dahil olmak üzere toplumun birçok alanında yaygın olarak kullanılmıştır. Radyasyonla çalışmanın tehlikeleri nedeniyle çalışanların, hastaların ve ekipmanın güvenliği temel bir konu haline gelmiştir. Yüksek enerjili radyasyonun nüfuz etme kabiliyeti yüksektir ve bu nedenle hem ekipman hem de insan vücudu üzerinde tehlikeli etkileri vardır. Radyasyonun zararlı etkilerini azaltmak için radyasyon koruyucu malzemeler kullanılmalıdır (Dong vd., 2022).

Teknolojik gelişmelere paralel olarak çeşitli sektörlerde farklı amaçlara yönelik malzemelere giderek daha fazla ihtiyaç duyulmaktadır. Bir malzemede birçok özellik aynı anda talep edilebilir ancak istenilen bütün parametrelere sahip bir malzeme olmayabilir.

Mukavemet, aşınma direnci, darbe direnci ve hafiflik gibi özelliklere sahip yüksek performanslı bir malzeme gerekebilir. Bütün bu parametrelerin element, bileşik, alaşım, cam, beton, seramik veya polimer gibi tek bir malzeme çeşidi ile sağlanması pek mümkün olmayabilir. Bu durumda her biri birbirinden farklı olan istenen özelliklere sahip malzemeler bir araya getirilerek bir kompozit oluşturulur ve sonuçta zırhlamada etkin olabilecek kompozit malzemeler geliştirilebilir(Yastrebinsky vd., 2021).

Zırhlama malzemesi içerisindeki bileşenler birbirlerinin zayıf yönlerini iyileştirerek malzemenin üstün özelliklerini elde etmek üzere bir araya getirilen farklı türdeki malzeme veya fazlardan oluşan malzemeler olarak da düşünülebilir. Buna göre, malzeme mikroskobik ölçekte heterojen bir malzeme özelliği gösterir ancak makroskobik ölçekte homojen bir malzeme özelliği gösterebilir. Çeşitli koşullar nedeniyle maruz kalabileceğimiz radyasyon miktarı ile ilgili endişeler ve nükleer fiziğin araştırma ve uygulama alanlarının her geçen gün genişlemesi, radyasyondan korunmanın önemini

artırmıştır. Diğer bir deyişle, alternatif ve çevre dostu enerji üretimlerine yöneldiğimiz küresel bir kalkınma planı olarak, pek çok araştırma alanında radyoaktif madde ve enstrümanlarla bol bol uğraşmamız gereken bir çağda olduğumuz unutulmamalıdır.

Gama ışınları ve X ışınları gibi diğer yüksek enerjili radyasyonlar insan vücuduna kolayca nüfuz edebilir. X-ışınları söz konusu olduğunda, bu yetenek radyolojide son derece yararlı olabilir, ancak belirli dozlarda radyasyona maruz kalma kalıcı hücre tahribatına neden olabilir ve kanser gibi ciddi sağlık sorunlarına yol açtığı kanıtlanmıştır. Bu zararlı etkileri azaltmak için araştırmacılar, insanlar ile radyasyon kaynağı arasına yerleştirilen ve yüksek enerjili fotonların mümkün olduğunca çoğunu azaltmak için kullanılan ve maruz kalma seviyelerini kabul edilebilir bir seviyeye indiren radyasyon kalkanları geliştirmektedirler.

Bir malzemenin bir radyasyon kalkanı olarak ne kadar iyi davrandığını ölçmek için, test edilen malzemenin birkaç enerjide ve bazen farklı kalınlıklarda çeşitli radyasyon azaltma katsayıları hesaplanır. Malzemenin koruma kapasitesi, bileşimi ve yoğunluğu gibi faktörlere bağlıdır. Bu nedenle araştırmacılar, malzemenin fiziksel özelliklerden bağımsız olduğu için, soğurma yeteneğinin ana göstergesi olarak malzemelerin kütle azaltma katsayısını kullanmaktadırlar (Agar vd., 2019).

Gama ışınları gibi foton tipi radyasyon, madde ile etkileşime girerken, meydana gelebilecek üç ana olay vardır: fotoelektrik etki, Compton saçılması ve çift oluşumu (E γ > 1,022 MeV için). Tüm bu olaylar, fotonlardan elektronlara kısmi veya tam bir enerji transferine neden olmaktadır. Yüksek atom numarasına (Z) sahip elementler, fotonlarla daha yüksek etkileşim olasılıkları nedeniyle düşük Z malzemelerine göre daha iyi bir gama radyasyonunu zırhlama yeteneğine sahiptir. Bununla birlikte yoğunlukta dikkate alındığında kurşun, bakır, paslanmaz çelik gibi malzemeler gama radyasyonunu etkisini azaltmak veya ortadan kaldırmak için tarihsel olarak radyasyon zırhlayıcı malzemeler olarak değerlendirilmiştir (Hager vd., 2019).

2.4.2. Nötron Radyasyon Zırhlama

Güçlü nüfuz etme yeteneklerine sahip olan nötronlar, esas olarak nükleer fisyon tarafından üretilir ve elektrostatik kuvvetten etkilenmezler. Bu özelliği nedeni ile nötronlar, malzemelerin çoğuna kolayca nüfuz edebilir ve atomun çekirdeği ile etkileşime girebilmektedir. Çünkü nötronların elektrik yükü yoktur ve nükleer fisyon yoluyla nükleer enerjinin yayılmasına yol açmaktadırlar (Chu ve Majemdar, 2012). Salınan bu enerji insanlara ve çevreye ölümcül zararlar verebilir. Sonuç olarak, nötron zırhlama malzemelerinin kullanımı zorunlu hale gelmektedir.

Normal olarak, kullanılmış nükleer yakıt farklı radyoaktif izotoplar içerir ve bu radyoaktif izotopların yarı ömürleri on binlerce yıl sürebilmektedir. Ayrıca nükleer atık, birçok nötron emisyonunun eşlik ettiği alfa, beta, gama, proton ve ikincil gama ışınları üretebilir. Bu nedenle, nükleer endüstrinin güvenilir işleyişini ve sürdürülebilir gelişimini sağlamak için nötron koruyucu malzemelerin araştırılması ve geliştirilmesini teşvik etmeyi zorunlu hale getirmektedir.

Genellikle nötron koruyucu malzemeler metallerden, ametallerden, kompozit malzemelerden, polimer kompozitlerden veya bileşiklerden oluşur. Genel olarak nötron zırhlama için Bor (B), kadmiyum (Cd), gümüş (Ag), indiyum (In), hafniyum (Hf), disprosyum (Dy), öropyum (Eu), gadolinyum (Gd) gibi malzemeler tercih edilmektedir. Bunun nedeni sayılan bu malzemelerin her zaman yüksek makroskopik nötron uzaklaştırma tesir kesitine sahip olmalarıdır (Fu vd., 2021).

Nükleer reaktörler için en etkili koruyucu malzeme ise, hidrojen miktarı bol malzemeler ve ağır elementlerdir. Ağır elementler tarafından elastik olmayan saçılma ve hidrojen tarafından elastik saçılma, hızlı ve orta enerjili nötronları yavaşlatmak için oldukça etkilidir ve soğurucular, termal nötronların yanı sıra ikincil gama ışınlarını da azaltabilir. Diğer seçenek ise, Fe, Pb, W gibi bazı elementler ile güçlendirilmiş kompozit malzemelerdir. Bunlar radyasyona dayanıklı ve yüksek termal kararlılığı olan malzemelerdir (Nambiar vd., 2012).

Nötron zırhlama analizleri genel olarak karmaşık bir yapıdır. Nötron zırhlamada sadece birincil nötronlar veya nötron kaynağını değil, aynı zamanda meydana gelen ikincil

nötronların üretimini kısıtlayarak nötron radyasyona karşı koruma sağlamak esastır. Nötronun hedef materyaldeki atomlar tarafından elastik olmayan saçılmaya uğraması sonucu termal nötronlar oluşur. Termal nötronlarda enerji kaybına uğradığından zırhlama materyali tarafından yakalanmaları söz konusu olur (Sukegawa vd., 2011).

Hafif elementlerde elastik saçılma, nötronun sahip olduğu kinetik enerjinin önemli bir bölümü tek bir saçılmada yok edilebilir. Özellikle hidrojenden saçılma için ortalama enerji kaybı, nötron enerjisinin başlangıçtaki enerjisinin yaklaşık yarısı kadardır. Sonuç olarak hidrojen atomu ile bir hızlı nötron esasen bir soğurulma veya saçılma ile etkileşime girer. Çünkü nötron ortalama olarak hızlı nötron enerji bölgesinden tek bir saçılma ile uzaklaştırılır. Ek olarak, düşük enerjili bir nötronun hidrojen atomundan saçılması yüksek enerjili bir nötrona göre daha olasıdır. Bu olay şu anlama gelmektedir; Hızlı bir nötron, hidrojenli bir ortamla etkileştiğinde, sonraki saçılma veya yavaşlama etkileşimleri, ilk saçılma etkileşiminin olduğu noktaya çok yakın olabilmektedir (L'Annunziata, 2016).

Nötronlar, hafif çekirdeklerle girdiği etkileşimler sonucu mevcut enerjilerinin büyük bir kısmını kaybederler. Bu nedenle hızlı nötronları yavaşlatmak için içerisinde hidrojen elementinin fazla olduğu malzemeler tercih edilmektedir. Moderatör olarak hidrojenin tercih edilmesinin nedeni hidrojen atomunun sahip olduğu tek protonun nötronla hemen hemen eşit kütleye sahip olmasıdır. Dolayısıyla nötronun hidrojen çekirdeği ile kafa kafaya yapacağı tek bir çarpışmada bile ile bütün enerjisini hidrojenin sahip olduğu protona aktarma ihtimali son derece yüksektir.

Epitermal veya hızlı nötronların radyasyona karşı zırhlanması iki aşamalı bir süreç gerektirir. Hızlı nötronlar etkileşmelerde nadiren soğurulur veya yakalanır. Bu nedenle hızlı nötronları önce termal enerjilere yavaşlatmak gerekir. Bu yavaşlatma işlemi madde atomları ile elastik olmayan saçılma işlemi olabilir. Örneğin hidrojenin elastik saçılma tesir kesiti elastik olmayan saçılma tesir kesitinden büyüktür. Bu nedenle verimli bir nötron termalizasyonu için demir gibi bir metale ek olarak hidrojene veya hidrojenle benzer bir elemente ihtiyaç vardır. Ek olarak etkili bir nötron radyasyon zırhlama için olarak bor, lityum, hidrojen gibi düşük atom numaralı elementler içeren malzemeler yanında gama radyasyona karşı zırhlamada yüksek yoğunluğa ve atom numarasına sahip

kadmiyum, indiyum gibi güçlü bir elementler kullanılabilir (Ahmad, 2015). Son olarak nötron radyasyonun için beton kullanılacaksa beton-çelik kombinasyonunun kullanılması iyi sonuçlar verebilmektedir.

2.4.2.1. Nötron Zırhlama İçin Kullanılan Bazı Materyaller

Bor : Doğal bor %19.9 oranında ¹⁰B ve %80,1 oranında ¹¹B içerir. ¹⁰B'nin tesir kesiti 3840 barn iken ¹¹B'nin tesir kesiti 5 mb'dir. Nötronun ¹⁰B tarafından soğurulması ile 0,48 MeV değerinde enerji yayılır. Bu enerji değeri yakalan bir gama ışının enerji değerinden daha küçüktür. Zırhlamada kullanılan bor elementi genellikle B₄C formunda bulunur. Bunun yanında bor grafit, boral (alüminyumla karıştırılmış bor), bor nitrür gibi bileşiklerde kullanılmaktadır. Bunun dışında radyasyon zırhlamada kullanılmak üzere borlu polietilen tercih edilmektedir. Hem gama hem nötron radyasyonuna karşı bir zırhlama söz konusu ise kurşun yüklü boratlı polietilen tercih edilebilmektedir (Li vd., 2021).

Lityum : Doğal lityum, %7,5 oranında ve ⁶Li %92,5 oranında ⁷Li içermektedir. Termal nötron soğrulması için 940 b tesir kesitine sahiptir ki bu yüksek bir değer sayılmaktadır. Aynı zamanda ikincil gama ışınları üretmez. Hafif bir element olmasının yanı sıra kolaylıkla zenginleştirilebilir. Bu değişik formlarda % 7,5 lityum içeren polietilenlerin zırhlamada kullanılmasının temel nedenidir. Ayrıca, lityum bileşikleri içeren malzemeler, nötron azaltıcılar olarak geliştirilmiştir (Glasgow vd., 1974, EPRI 2009). Bunun nedeni, lityum çekirdeklerinin radyoaktif olmayan ⁶ Li(n,a)T reaksiyonu yoluyla termal nötronları azaltmasıdır. Nötron koruyucu işlevi için uygun olan yüksek yoğunluklu LiF paletlerinin hazırlanması için etkili bir metodoloji geliştirilmiştir (Svikis, 1964).

Parafin: İlk uygulanabilir malzemelerden biri olan parafin, tıpkı polietilen veya su gibi, yüksek hidrojen oranı nedeniyle nükleer mühendislikte olarak yaygın kullanılmaktadır. Bir radyasyon kaynağının etrafına sarılmış bir parafin tabakası, yüksek enerjili nötronları yumuşatabilir ve hızlı nötronları termal nötronlara dönüştürebilir. Nötron azaltıcı elementler açısından zenginleştirilmiş borik asit-parafin bileşimlerinden oluşmuş nötron zırhlama blokları, nükleer mühendislikte her zaman

kullanılmaktadır (Igashira vd., 1986). Düşük borik asit içerikli boratlı parafin, termal nötronların azaltılması için yetersizdir.

Tek başına yüksek içerikli parafin ise hızlı nötronları etkili bir şekilde azaltamaz. Yapılan çalışmalara göre, boratlı parafinin, radyasyon kaynağından yayılan hızlı nötronları diğer malzemelerden daha etkili bir şekilde yumuşatabildiğini, bunun sonucunda ¹⁰B çekirdekleri ile çarpışma olasılığını iyileştirdiğini ve termal nötronların soğurulmasını desteklediğini göstermektedir (Gallego vd., 2009).

Ağır Metaller: Nükleer mühendisliğin gelişmesiyle birlikte, radyasyon türüne göre yeni zırhlayıcı malzemelere olan talepte gün geçtikçe artmaktadır. Genellikle, istenmeyen azaltılması radyasyonların veya soğurulması için kurşun oksit ve kurşun oksit/tungsten/kalay kompozitlerinden yapılan radyoaktif zırhlayıcı malzemeler kullanılmaktadır (Seltborg vd., 2005). Ağır metallerin nötron koruma verimliliği, radyasyon kaynağı türleri ve enerji seviyesi ile ilişkilidir. Kurşun oksit, bizmut, baryum gibi ağır metaller ve diğer yüksek atom numaralı elementler, radyasyon ışınlarını azaltmak için tasarlanmaktadır. Su anda, bizmut borosilikat camları, ikili bizmut silikat camları ve silikat ve borlu ağır metal oksit camları dahil olmak üzere çeşitli ağır metal oksit camları türleri vardır (Elalaily vd., 2016). Kurşun bazlı camlar tatmin edici nötron koruma performansı için geliştirilmiştir. Aslında, yüksek atom numaralı malzemeler nükleer radyasyon kaynaklarından yayılan her türlü radyasyonu, özellikle nükleer laboratuvarlardan yayılan radyasyonu engelleyemez veya soğuramaz (Singh vd., 2014).

Beton : Tüm koruyucu malzemeler içerisinde düşük maliyeti ve her şekle dökülebilme özelliği nedeni ile beton çok tercih edilmektedir. Ayrıca beton iyi bir yapı performansına sahiptir ve diğer zırhlama materyalleri ile karşılaştırıldığında nötron ve gama radyasyona karşı koruma için kullanılan zırhlamaya uygundur. Yaklaşık olarak beton % 13 çimento, %7 su ve %80 agregadan oluşur. Farklı katkılama maddeleri ile birçok farklı türde beton hazırlanabilmektedir (Abullouh vd. 2010). Betonda radyasyon azaltılmasına neden olan etkiler olarak betonun yoğunluğu, agrega tipi, su-çimento oranı ve element bileşimi sayılabilir (Pillai vd., 2016). Betondaki hidrojen miktarı, nötron radyasyonuna karşı betonun zırhlama özelliklerini olumlu yönde etkilemektedir. Genel olarak betonda su miktarının fazla olması hızlı nötronları daha kolay yavaşlatmayı sağlar. Gerçekte betondaki tüm hidrojen su formundadır. Sadece kalıcı su, çimento ve agregadaki hidratasyon suyu betonun gözeneklerinde serbest su olarak bulunur. Yüksek sıcaklıklarda her iki türdeki su kaybolabilir. Bu olayda betonun hızlı nötronları azaltma kabiliyetini yitirmesine neden olur. Normal ortam şartlarında bile su difüzyon ve buharlaşma nedeni ile yok olabilir. Tipik olarak betondaki su miktarı, beton ağırlığının %3'ü kadardır ve bu su betonun kürlenmesi sırasında kaybolur. Ortam sıcaklıklarında ise bu oranı 20 ile 30 yıl arasında değişen sürede kaybolur. Betonun içerisindeki su miktarını azaltmak geçen nötron radyasyonunu artırmaktadır. Örneğin su mikarının %4,5 tan %3,5'a inmesi ile enerjisi 1 ile 15 MeV arasında değişen nötron sayısını 1,6 oranında artıracaktır (Pillai vd., 2016).

Cd ve Gd Elementleri İçeren Nötron Azaltıcı Malzeme : Nükleer mühendislikte kadmiyum elementleri kullanıldığında, zayıf mukavemeti, yüksek toksisitesi ve düşük korozyon direnci nedeniyle paslanmaz çelik gibi bir kaplama tabakası eklemek gerekir. Gadolinyum (Gd), mükemmel bir nötron azaltıcı malzeme olan yüksek nötron uzaklaştırma tesir kesitine sahip iki tip izotopa sahip olan bir elementtir. Bu tür malzemeler, radyoaktif atık depolaması için bir tür nötron azaltıcı malzeme olarak kullanılabilir (Moon and Yi, 2016).

Polimer Esaslı Kompozitler : Polimer bazlı kompozitler, yüksek oranda hidrojen içermeleri nedeni ile hızlı nötronları etkin bir şekilde termal nötronlara dönüştürmeleri ve metal içerikli malzemelere göre daha hafif olmaları nedeni ile yapısal malzeme olarak tercih edilebilirler (Nambiar vd. 2016). Genellikle, iyi bir moderatör malzeme olan yüksek hidrojen içeriğine sahip organik polimer, hızlı nötronların yavaşlatılması durumlarında bariz bir etkiye sahiptir. Temel olarak yüksek yoğunluklu organik polietilen, epoksi reçine, fenolik reçine, polimid reçine de dahil olmak üzere organik polimerler radyasyon zırhlamada yaygın olarak kullanılmaktadır Nötron zırhlama performansını daha da arttırmak için, genellikle organik polimerlere bor ve türevleri eklenir (Jun vd., 2011; Bian vd., ;2014).

Bor içeren malzemelerin eklenmesinden sonra, bor ve hidrojen, ikincil gama ışınlarının ortaya çıkmasıyla termal nötronları yakalayabilir ve termal nötron absorpsiyon kapasitesini artırabilir. Polimer bazlı nötron koruyucu malzemeler genellikle yüksek hızda karıştırma, yoğurma, plastikleştirme ve laminasyon yoluyla hazırlanır. Sonuçlar, polimer kompozitlerin, 80°C ila 100°C arasında değişen sıcaklıklarda mühendislik uygulamaları için uygun olan tatmin edici radyasyon direncine ve iyi nükleer mühendislik özelliklerine sahip olduğunu göstermektedir (Özdemir vd., 2016). Bazı polimerlerin içerikleri Tablo 2.7'de verilmiştir.

Reçine	polietilen	KRAFTON-HB4	eponit	300°C reçine	geliştirilmiş reçine	
Yoğunluk (g/cm ³)	0,93	1,08	1,7	1,8	1,28	
Element (ağırlıkça%)						
Н	14,4	10,4	25,5	29,4	8,2	
С	85,6	74,5	43,8	30,4	4,8	
0		10,6	8,9	6,1	27,6	
В		2,0	1,2	0,31	3,4	
Ν		2,13		14	2,2	
Si		0,38		7,4		
Ca		0,01		6,8		
Al		0,01				

Tablo 2. 7. Polimerlerin kimyasal bileşimi (Bian vd., 2014)

B/Al Alaşım (Bor-Alimünyum Alaşımı) : Borun alimünyum içerisindeki düşük çözünürlüğü nedeni ile belli bir dereceye kadar paslanmaz çeliğe benzemektedir. Sadece sınırlı oranlarda bor ve alüminyum birbiri ile etkileşime girer ve küçük tane boyutlarında alaşımın kırılganlığı artar. Atık yakıt havuzunda sınırlı bor içeriğine sahip nötron azaltıcı malzeme kullanılırsa, nükleer reaksiyonun kritik kontrolünde sorunlar yaşanabilir. Bu nedenle, atık yakıt depolama malzemeleri, yüksek ¹⁰B alan yoğunluğuna sahip kompozitler tecih edilmektedir (Mcall, 1997). Tablo 2.8'de nötron radyasyonunda kullanılan malzemelerin avantaj ve dezavantajları gösterilmiştir. Tablo 2.8'den

anlaşılacağı üzere nötron radyasyonunu azaltmak için tek bir element değil birkaç element veya alaşımın veya bileşiğin biraraya getirilmesi daha uygun olacaktır.

Malzemeler	Bor içeriği (%)	Avantajlar	Dezavantajları
Bor katkılanmış paslanmaz çelik	0,20–2,25	Işınlama direnci, korozyon direnci, yüksek sıcaklık direnci	Düşük bor çözünürlüğü, yüksek oranda zenginleştirilmiş ¹⁰ B
B ₄ C/Al kompozit	<25	Düşük yoğunluk, düşük gözeneklik, iyi mekanik özellikler, korozyon direnci	Üretim sürecinde çeşitli etkiler
B ₄ C/A1 seramikler	27,4–50,9	Düşük yoğunluklu, yüksek bor içeriği	Yüksek gözeneklik, zayıf yapı performansı, düşük korozyon direnci
B/Al alaşımı	0,5–4,5	Düşük yoğunluklu, yüksek termal iletkenlik	Düşük mekanik performans, düşük bor çözünürlüğü
Amorf alaşım	<20	Mükemmel nötron koruma verimliliği, yüksek korozyon direnci	Alaşım elementlerinin dağılımı, ara yüzey reaksiyonu

Tablo 2. 8. Nötron zırhlamada kullanılan bor içerikli bazı malzemelerin avantaj ve dezavantajları (Mcall, 1997)

2.5. Radyasyonun Madde ile Etkileşimi

Bu kısımda gama radyasyonun ve nötron radyasyonunun madde ile etkileşimlerine yer verilmiştir.

2.5.1. Gama Radyasyonun Madde ile Etkileşimi

Yüksek nüfuz etme güçleri nedeniyle gama radyasyonu, etkileşime girdiği canlıda büyük hasarlar oluşturulabilir. Malzemelerde ise farklı süreçler ile etkileşime girebilmektedir.

Fotoelektrik etki, Compton saçılması ve çift oluşumu en baskın süreçlerdir. Bu süreçlerin enerjiye bağlı değişim eğrileri Şekil 2.8'de sunulmuştur.

2.5.1.1. Fotoelektrik

Madde üzerine gelen gama fotonun sahip olduğu enerji atoma bağlı bir elektronun bağlanma enerjisinden büyük ise, atomun elektronu yörüngeden ayrılabilir. Ayrılan bu elektrona fotoelektron, bu olayada fotoelektrik olayı denmektedir. Bu etkileşimde, gelen fotonun enerjisi tamamen elektrona aktarılmaktadır. Enerji aktarımı neticesinde foton, yörünge elektronu tarafından soğurulmaktadır (Martin, 2006).

Fotoelektrik olayda, foton enerjisinin bir kısmını elektronu atomdan koparmak için kullanır. Geriye kalan enerjinin bir kısmını yörüngeden ayrılan elektrona kinetik enerji kazandırır. Son olarak, enerjinin az bir bölümüde atoma geri tepme enerjisi olarak aktarılır. Sökülen elektronun yörüngede meydana getirdiği boşluk üst yörüngelerdeki bir elektron tarafından doldurulur. Meydana gelen bu geçiş işleminde atomun yayımlanan karakteristik X-ışınları Şekil 2.9'da gösterilmiştir. Serbest hale geçen fotoelektronun kazandığı kinetik enerji ifadesi denklem (2.3) ile ifade edilir (Martin, 2006).

$$K.E = h\nu - E_b \tag{2.3}$$

Denklem (2.2)'deki ifadede *K.E* kinetik enerji, hu gelen fotonun enerjisi, E_b ise elektronun yörüngeye bağlanma enerjisidir. Serbest bir elektron fotoelektrik olay gerçekleştiremez. Bunun nedeni momentum korunamamasıdır. Bağlı halde bulunan elektronun sahip olduğu enerjisinin bütünüyle soğurulması mümkün olabilmektedir. (Bilge ve Tuğrul, 1990).

Şekil 2.9. Fotoelektrik olayı sonucu karekteristik X-Işını oluşumu (Tuzluca, 2007)

2.5.1.2. Compton Saçılması

Compton saçılması, yüksek frekanslı bir fotonun yüklü bir parçacıkla, genellikle bir elektronla etkileşiminden sonraki saçılmasıdır. Compton olayı sırasında, gama fotonu ile atoma zayıf şekilde bağlı dış yörünge elektronu veya serbest elektron arasında Şekil 2.10 gösterildiği gibi bir etkileşim gerçekleşmektedir. Bu olayda durgun elektron üzerine gönderilen gama fotonunun, elektronla etkileşmesi sonucu sahip olduğu enerjisinin bir kısmını elektrona aktarmaktadır. Bilinen bir dalga boyuna sahip foton serbest elektronlarla etkileşime girdiğinde, fotonun bir θ açısı ile saçıldığı gözlemlenmiştir (Taylor vd., 2004).

Şekil 2.10. Compton saçılmasının gösterimi (Venugopal vd., 2013)

Compton saçılması da fotoelektrik olayı gibi ışığın tanecik gibi davranabildiğini ispat eden bir etkileşimdir. Bu olayın diğer bir sonucuda, fotonların da momentuma sahip olduğudur (Martin, 2006).

Compton olayında;

* Etkileşme sonucu foton ortamdan kaybolmaz. Diğer bir deyişle soğurulmaz.

* Enerji korunur. Elektron üzerine gönderilen foton, enerjisinin bir kısmını elektrona aktarır. Kalan enerjiyle de kendisi saçılmaya uğrar. Buna göre;

$$E_{gelen} = E_{saçılan} + E_{elektron}$$

$$hv_{gelen} = hv_{saçılan} + hv_{elektron}$$
(2.4)

(2.4) ifadesi yazılabilir. υ fotonun frekansını ifade etmektedir.

Enerji denklemine göre $v_{gelen} > v_{sacılan}$ 'dır. Frekans ile dalga boyu ters orantılı olduğundan $\lambda_{gelen} < \lambda_{sacılan}$ olarak yazılır. Momentum korunur.

$$P_{gelen} = P_{sacilan} + P_{elektron}$$
 (2.5)

Enerji ve momentum korunumu ifadelerinin birlikte düzenlendiğinde elde edilen aşağıdaki denklem (2.6) ile fotonun dalga boyundaki değişim bulunur.

$$\Delta \lambda = \lambda_{saçılan} - \lambda_{gelen} = \frac{h}{m_0 c} (1 - \cos \theta)$$
(2.6)

2.5.1.3. Çift Oluşumu

Çift oluşumu bir çekirdeğin yakınında bir elektron-pozitron çifti oluşturan foton anlamına gelir. Çift oluşumunun gerçekleşmesi için enerjinin korunması gerekir. Ayrıca toplam yük ve çizgisel momentum da korunmaktadır. Çift oluşum olayında enerjinin kütleye dönüşmesi söz konusudur. Çift oluşumu sırasında gelen fotonun fazla kalan enerjisi elektron-pozitronun kinetik enerjisi için kullanılır. Çift oluşumunda meydana gelen elektronlar serbest elektrona benzer hareket ederler. İyonlaşma süreçleri oluşturabilirler.

Pozitron ise madde ile etkileşime girerken elektrona benzer şekilde iyonlaşma, uyarma ve Bremsstrahlung gibi etkileşimler nedeni ile sahip oldığu enerjiyi kaybeder. Pozitron ile serbest bir elektron karşılaştığında ise pozitron ve elektron birbirlerini yok eder.

Neticede birbirine ters yönlü ve enerjileri 0,511 MeV olan iki γ ışını oluşur. Çift oluşum etkileşmesinde fotonun, çekirdeğin sahip olduğu elektromanyetik alanı ile etkileşimde bulunmaktadır. Bu nedenle etkileşmenin olma ihtimali, Z atom numarası ile hızlı bir artış göstermektedir.

$$E_{foton} = M_{e^{-}}c^{2} + M_{e^{+}}c^{2} + K_{e^{-}} + K_{e^{+}}$$
(2.7)

Burada M_{e^-} ve M_{e^+} , elektron ve pozitronun durgun kütleleri K_{e^-} ve K_{e^+} ise elektron ve pozitronun kazandığı kinetik enerjilerdir.

Çift oluşumunun olabilmesi için gelen fotonun enerjisi eşitlik (2.8)'de ifade edildiği gibi, elektronun ve pozitronun durgun kütle enerjileri toplamına yani 1,022 MeV'e (eşik enerjisi) eşit veya büyük olması gerekir (L'Annunziata, 2003).

$$hv = E = 2M_e c^2 \times 0,511MeV = 1,02MeV$$
(2.8)

Şekil 2.11'da çift oluşumunun gösterimi verilmiştir.

Şekil 2.11. Çift oluşumu (Martin, 2006)

2.5.2. Nötron Radyasyonun Madde İle Etkileşimi

Nötron iki farklı türde madde ile etkileşebilir. Bunlar saçılma ve soğurulmadır. Her iki tür etkileşmede nötronun herhangi bir enerji değerinde olabilir. Ancak genel olarak saçılmaya sebebiyet veren reaksiyonlar birkaç yüz keV mertebesinin üzerindedir. Bunun dışında düşük enerjilerde özellikle termal ve soğurulma önemli hale gelebilmektedir.

2.5.2.1. Saçılma

Saçılma etkileşiminde, etkileşimden sonra nötron serbest kalır ancak çarptığı çekirdeğe enerjisinin bir kısmını aktarır. Saçılma etkileşimleri elastik ve inelastik saçılma olarak 2'ye ayrılır.

Elastik Saçılma : Toplam momentum, enerji ve kinetik enerji korunur. A(n,n)A olarak ifade edilen nükleer reaksiyonlardır. Nötron atom çekirdeğine çarptıktan sonra Şekil 2.12'de gösterildiği gibi kendi kinetik enerjisinin bir kısmını çekirdeğe aktarır ve geldiği doğrultudan tam aksi yönüne saparak çekirdekten uzaklaşmaya başlar. Elastik saçılmalar çarptığı çekirdeğin yapısında herhangi bir değişikliğe neden olmazlar (L'Annunziata, 2003).

Çekirdek çarpışmadan önce durağan ise, nötronla çarpışma olduktan sonra çekirdek nötrondan kinetik enerji kazanır ve hareket etmeye başlayacaktır. Nükleer reaktörlerde hızlı nötronları yavaşlatmak için sıklıkla tercih edilen bir yöntemdir.

Şekil 2.12. Nötronun çekirdekten elastik saçılması (Şahin, 2013)

Elastik Olmayan Saçılma (İnelastik Saçılma) : İnelastik saçılma, A(n,n')A* veya A(n,2n')B* şeklindeki nükleer reaksiyonları ifade etmektedir. Nötron, kinetik enerjisinin bir kısmını çekirdeğe aktararak, Şekil 2.13'te gösterildiği gibi geliş yönünden farklı bir doğrultuda ve etkileşim başlamadan önce sahip olduğundan daha küçük bir kinetik enerji ile uzaklaşır. Nötronla etkileşime giren çekirdek daha sonra gama veya nötron yayımlayarak taban enerji durumuna döner. Bu tür etkileşimlerde kinetik enerji korunmaz, momentum ve toplam enerji korunur.

Esnek olmayan çarpışma, nötronların hızlı olduğu durumda meydana gelmektedir. Nötronun çekirdek ile etkileşip çekirdeği uyarması için enerjisinin en az 1 MeV olması gerekmektedir. Belirtilen bu enerji değeri altında sadece elastik saçılma olmaktadır. Çekirdek çarpışmaya uğramadan önce duruyor ise, nükleer reaksiyonun olabilmesi için nötronun çekirdeğin uyarma enerjisinden daha fazla bir kinetik enerjiye sahip olması gerekmektedir. Bu nedenle, esnek olmayan saçılmanın bir "eşik reaksiyonu" olduğu söylenir. Burada eşik değeri nötronun sahip olduğu minumum kinetik enerjidir. Esnek olmayan saçılma ihtimali genel olarak elastik saçılmadan daha düşük olmasına rağmen, esnek olmayan bir çarpışmada nötronun enerji kaybı daha fazladır.

Şekil 2.13. Nötronun inelastik saçılması(Şahin, 2013)

Nötron soğurulması : Bir soğurulma etkileşiminde nötronlar çekirdek tarafından emilir ve sonuçta büyük bir enerji depolayabilmektedir.

Nötron yakalama : Hedefe üzerine gelen bir nötron, hedef çekirdekle birleşerek Şekil 2.14'te gösterildiği gibi bir bileşik çekirdek oluşturabilir. Sonuç olarak, her çekirdek, kütle numarası bir büyük olan bir izotop haline gelir. Bu tepkime sonucunda meydana gelen izotop, uyarılmış durumdadır ve gama yayınlayarak temel enerji seviyesine gelir. Bu tepkimeye nötron yakalama ya da ışımalı yakalama isimleri verilmiştir. Meydana gelen çekirdek kararlı ya da kararsız durumda olabilir. Kararsız bileşik çekirdek meydana geldiğinde çekirdek, kararlı duruma gelinceye kadar beta bozunumu yapabilir.

Şekil 2.14. Nötronun yakalama (Şahin, 2013)

Yüklü parçacık yayınlanması : Yüklü parçacıkların çekirdekten ayrılabilmesi için gerekli şart Coulomb engelinin aşılması ile mümkündür. Bu engel bir eşik enerjiyi ifade eder. Bu eşik enerji, hedefin Z proton sayısı ile doğrudan ilişkilidir. Bu tür etkileşimler genellikle proton sayısı az olan hafif çekirdeklerde görülür. (n, α) tepkimeleri ise yeteri kadar enerji salan (ekzotermik) olduklarından, daha düşük enerjili örneğin termal ya da yavaş nötronlarla bile etkileşim sağlanabilir. Bu ekzotermik tepkimelere örnek olarak ⁶Li(n, α)3H ve ¹⁰B(n, α)⁷Li verilebilir (James, 2006).

Fisyon : 1939 yılında Uranyum bileşiklerinin termal nötronlarla bombardımanı sonucu ilk kez farkedilen fisyon, termal nötronlarla zorlanmadan fisyon yapabilen (fissile) bir

çekirdeğin veya hızlı nötronlarla fisyon yapabilen üretken (fertile) bir çekirdeğin nötronlarla bombardımanı sonucu oluşur.

Ağır bir çekirdeğin (²³⁵U gibi) daha küçük iki çekirdeğe bölünmesiyle oluşan sürece nükleer fisyon denir. Ürün çekirdeklerin kütlesi ana çekirdeğin kütlesinden azdır; bu kütle eksikliği enerji olarak karşımıza çıkmaktadır.

 235 U + 1 n \rightarrow 236 U* \rightarrow X +Y + nötronlar (1 veya 1'den fazla)

Uranyum fisyonunda X ve Y'nin farklı kombinasyonları vardır (Yücel, 2012).

Fisyon sürecinin basamakları söyle sıralanabilir:

²³⁵U çekirdeği termal nötron yakalar. Fazla enerjiden dolayı şiddetli titreşimler olur. ²³⁶U* oluşur. ²³⁶U* çekirdeği deforme olmuştur; gülle biçimli iki bölgedeki protonlar arası itme deformasyonu artırır. Çekirdek birkaç nötron yayınlayarak 2' ye ayrılır. Örneğin $\frac{235}{92}U$ çekirdeğinin yavaşlatılmış nötronla fisyonu Şekil 2.15 gibi gösterlir.

$${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{92}^{236}U \rightarrow {}_{56}^{141}Ba + {}_{36}^{92}Kr + 3({}_{0}^{1}n) + Enerji$$
(2.9)

Şekil 2.15. Nükleer fisyon reaksiyonuna bir örnek (Martin, 2006)

2.6. Tesir Kesiti

Tesir kesiti, bir etkileşmenin meydana gelebilme olasılığını ifade eden bir kavramdır. Meydana gelen etkileşme olayının türüne göre tesir kesiti adlandırılır. Örneğin çift oluşumu meydana gelmişse çift oluşumu tesir kesiti, koherent saçılma söz konusu ise koherent saçılma tesir kesiti ifadeleri kullanılır.

Bir etkileşme olayında tesir kesitinin hesabının yapılabilmesi, zırhlama süreçlerinde, sağlık fiziği uygulamalarında, radyasyon azaltma katsayılarının hesaplanmasında, atomların yapısının tespitinde, karbon yaş tayininde, ilaç endüstrisi gibi birçok alanda kullanılmaktadır (Hubbell, 1989). Bunun yanında radyoizotopların incelenmesinde, radyasyon miktarının tespitinde, birçok uygulamalı mühendislik alanında da tesir kesitinin belirlenmesi önemli rol oynar. Ayrıca bazı durumlarda ayırt edici özelliği de bulunmaktadır. Örneğin, karakteristik X-ışınları tesir kesiti her bir element için ayırtedici özelliğe sahiptir.

Şekil 2.16. Tesir kesitinin şematik gösterimi (James, 2006:Meyerhof, 1967)

Şekil 2.16'da gösterildiği üzere, yüzey alanı A olan ve kalınlığı dx olan bir levha düşünelim. Levhanın birim hacminde n adet atom barındırıyorsa, hacmi Adx, toplam atom sayısı nAdx kadar olmaktadır. Levhadaki her bir çekirdek için σ etkileşme tesir kesiti hesaplandığında, levhada bulunan bütün çekirdeklerin toplam etkileşme tesir kesiti nA σ dx olur. Gelen ışın demetindeki parçacık sayısı N ise, levhadaki çekirdeklerle etkileşen parçacık sayısı dN olur. Buradan, F alan kesri hesaplanabilir.

$$F = \frac{dN}{N} = \frac{n\sigma Adx}{A}$$
(2.10)

$$F = n\sigma dx \tag{2.11}$$

Bu alan kesri I şiddetine sahip ışın demetinin ince bir levhadan geçerken ışın demetinin şiddetinde oluşan farkın kesrini ifade eder. Buna göre şiddetteki dI değişimi;

$$dI = -(n\sigma dx)I_0 \tag{2.12}$$

bağıntısı ile verilir.

Eşitlikteki (-) işareti x kalınlığı arttıkça I şiddetinde azalma olacağını ifade eder. Bütün bu ifadelerden sonra (2.13) yazılabilir (James, 2006).

$$I = I_0 e^{-n\sigma x} \tag{2.13}$$

Burada, gelen ışın demetinin etkileşime başlamadan önceki şiddeti I₀, ışın demetinin x kalınlığındaki malzemeyi geçtikten sonraki şiddeti ise I'dır. Işın demetindeki parçacık sayısı demetin şiddeti ile orantılı olduğundan (2.13) bağıntısı gelen parçacık sayısı ve etkileşimdeki parçacıkların sayısı olarak yazılabilir. Buna göre (2.14) eşitliğ yazılabilir.

$$N = N_0 e^{-n\sigma x} \tag{2.14}$$

Burada N₀ levhaya gelen parçacıkların sayısını N ise x kalınlığındaki levhayı geçen parçacıkların sayısını temsil etmektedir. $e^{-n\hat{c}x}$ ifadesinin 1'den çok küçük olduğu durumlarda ise eşitlik (2.15) kullanılabilir.

$$e^{-n\sigma x} = (1 - n\sigma x) \tag{2.15}$$

Bu ifade hem levhanın geometrik olarak çok ince olmasını hem de σ 'nın değerinin çok küçük olmasını temsil etmektedir. Buradan hareketle (2.14) eşitliğini tekrar yazarsak (2.16)'ü elde ederiz.

$$N = N_0 (1 - n\sigma x) \tag{2.16}$$

Buradan hareketle x kalınlığını geçerken etkileşime maruz kalan parçacıkların sayısı N_s olarak temsil edilirse (2.17) eşitliği bulunur.

$$N_{s} = N_{0} - N \tag{2.17}$$

N yerine (2.16) ifadesi yerine yazılırsa eşitliğin son hali (2.18) olur.

$$N = N_0 - N_0 n\sigma x \tag{2.18}$$

Sonuç olarak tesir kesiti ifadesi için (2.19) bağıntısı yazılır.

$$\sigma = \frac{N_s}{N_0 nx} \tag{2.19}$$

Birimi barn (cm²)'dir. 1 barn 10⁻²⁴ cm²'dir. İncelenenen etkileşme olayının doğasına göre hedefin birim yüzey alanından küçük veya büyük olabilmektedir.

no ise makroskobik tesir kesiti olarak bilinir ve \mathcal{E} ile temsil edilir. Gama ışınları için makroskobik tesir kesiti \mathcal{E} yerine μ ile gösterilir ve lineer azaltma katsayısı olarak tanımlanır (Beiser, 2003).

Işık demeti (foton) hedef materyal üzerine geldiğinde ışık demeti hedeften saçılabilir, yansıyabilir, hedef materyal tarafından soğurulabilir, çift oluşumu veya fotoelektrik olay oluşabilir. Meydana gelebilecek bu olayların tesir kesiti toplamlarına toplam tesir kesiti denir (Hubbell, 1989). Foton etkileşmeleri nedeni ile oluşabilecek tesir kesitleri (2.20)'de verilmiştir. Bunların toplamı toplam tesir kesitini temsil eder.

$$\sigma_{TOP} = \sigma_{FE} + \sigma_{KOH.} + \sigma_{INKOH.} + \sigma_{\zeta IFT} + \sigma_{U\zeta LU} + \sigma_{FNUK.}$$
(2.20)

Eşitlik (2.19)'da sırasıyla verilen fotoelektrik tesir kesiti, koherent (Compton) tesir kesiti, inkoherent (Rayleigh) tesir kesiti, çift oluşum tesir kesiti, üçlü oluşum (triplet) tesir kesiti ve fotonükleer tesir kesitlerinin toplamı toplam tesir kesitini oluşturmaktadır.

2.7. İyonlaştırıcı Radyasyon Zırhlama Parametreleri

Bu kısımda iyonlaştırıcı radyasyonu zırhlamada kullanılan bazı parametreler sunulmuştur.

2.7.1. Lineer Azaltma Katsayısı

Lineer azaltma katsayısı (μ), bir malzemenin birim kalınlığı başına tek enerjili bir ışında azaltılmış gelen fotonların oranını açıklayan bir sabittir. Birimi cm⁻¹'dir. Lineer azaltma katsayısı, artan atom numaras<u>ı</u> ve soğurucu malzemenin artan fiziksel yoğunluğu ile artar. Soğurma kıyıları hariç, artan foton enerjisi ile azalır (Eves vd., 2021). Fotoelektrik etki, Compton saçılması, çift oluşumu gibi tüm etkileşimler bu katsayıyı etkilemektedir. Bir malzemenin x kalınlığında azalan ışının şiddeti (2.21) denklemi ile verilir.

$$I = I_0 e^{-\mu x} \tag{2.21}$$

Bu denklemde I₀ ışın demetinin başlangıçtaki değerini, x kalınlığını geçen ışın demetinin şiddetini, μ ise lineer azaltma katsayısı temsil etmektedir. (2.20) bağıntısında her iki tarafın logaritması alınırsa, (2.22) eşitliği elde edilir.

$$\mu = \frac{\ln(\frac{I_0}{I})}{x} \tag{2.22}$$

2.7.2. Kütle Azaltma Katsayısı

Malzemelerin farklı faz durumlarındaki özgül ağırlık değerlerinin farklı olabilmesi lineer azaltma katsayısının malzemeye has sabit bir değer almasını ve iyi yorumlanmasını engellemektedir. Bu nedenle malzemeler sahip olduğu lineer azaltma katsayıları tam olarak karşılaştırılamamaktadır. Tespit edilen lineer azaltma katsayısının malzeme yoğunluğuna oranı kütle azaltma katsayısı vermektedir. Ayrıca aşağıdaki matematiksel ifade ile direkt deneysel olarak belirlenebilir. Bu yöntem sayesinde elementlerin, bileşiklerin, alaşımların veya kompozit malzemelerin radyasyon koruyuculuğu hakkında daha net yorum yapılabilmektedir. Eşitlik 2.23'de kütle azaltma katsayısı için matematiksel ifade verilmiştir (Knoll, 2002).

$$\mu_m = \frac{\mu}{\rho} = \frac{\ln(\frac{I_0}{I})}{\rho x}$$
(2.23)

Bu eşitlikte μ_m kütle azaltma katsayısını, μ lineer azaltma katsayısını, ρ malzemenin yoğunlugunu temsil eder. Kütle azaltma katsayısı, malzemenin fiziksel özelliklerden bağımsızdır ve doğrudan malzemenin radyasyona karşı tutumunu ifade etmektedir. Bu değer, gelen radyasyonun enerjisi ve malzemenin atom numarasına göre değişkenlik gösterir. Kullanılan malzemenin atom numarası ile doğru orantılıdır. Nükleer teknolojinin kullanıldığı her alanda radyasyon korumayı sağlamada son derece önemli bir göstergedir. Kullanılan malzemeler için ayırt edicidir.

Birden fazla elementten meydana gelmiş kompozit bir malzemenin kütle azaltma katsayısı her bir elementin kütle azaltma katsayılarının ağırlık kesrine göre toplamıdır (Polat and İçelli, 2010).

$$\mu_m = \sum_i W_i(\mu_m)_i \tag{2.24}$$

Burada w_i i. elementin ağırlık kesri, $(\mu_m)_i$ ise i. elementin kütle azaltma katsayısıdır.

2.7.3. Etkin Atom Numarası

Içeriğinde birden fazla element barındıran malzemenin atom numarası tek bir elementin atom numarası ile temsil edilememektedir. Bu durumda atom numarası yerine etkin atom numarası (Z_{etk}) terimi kullanılır. Bu parametre radyasyonun var olduğu her alanda zırhlama tasarımı ve radyasyon doz hesaplamalarında kullanılmaktadır. Bir maddenin kimyasal yapısı ile ilgili temel bilgileri tespit etmede referans noktası olarak tercih edilebilir. Örneğin etkin atom numarası büyük olan malzemeler genellikle yapısında inorganik bileşikler bulundururlar. Etkin atom numarası daha küçük olan malzemelerin içeriğinde genellikle organik bileşikler bulunur. (Manohara vd., 2008). Radyasyon zırhlama için kullanılacak malzeme karışım, bileşik ya da alaşım formunda ise malzemenin zırhlama yeteğinin tespit edilebilmesi için etkin atom numarasının hesaplanması zorunlu bir hal almaktadır (Murty and Cooper 1999).

Foton etkileşim tesir kesiti için, fotonun sahip olduğu enerjiye karşı kullanılan malzemenin atom numarası ile ilişkilendirilen grafikler çizilebilir. Farklı oranlarda farklı elementleri ihtiva eden kompozit bir malzemenin iyonlaştırıcı radyasyonla etkileşimini ifade etmede etkin atom numarası kullanılmaktadır. Etkin atom numarası, malzemenin içeriğinde bulunan elementlerin atom sayısına bağlıdır.

İyonlaştırıcı radyasyonun madde ile etkileşiminde sıklıkla kullanılan etkin atom numarası, radyasyon doz hesaplamalarında, radyasyon azaltma parametrelerini belirlemede ve Kerna hesaplamalarında aktif olarak kullanılır (Manjunathaguru ve Umesh 2009). Etkin atom numarası etkin atomik ve elektronik tesir kesitleri yardımı ile belirlenebilir. Atomik tesir kesiti ise etkin moleküler tesir kesiti yardımı ile belirlenebilir (Wang vd., 2014).

$$\sigma_{t,m} = \frac{1}{N} \left(\frac{\mu}{\rho}\right)_{malzeme} \sum_{i} (n_i A_i)$$
(2.25)

(2.25)'da ifade edilen bağıntıda $\sigma_{t,m}$ toplam moleküler tesir kesitini, A_i malzemedeki atomlara ait atom ağırlığını, n_i malzemeyi oluşturan atomlarının sayısını, N Avogadro sayısını, $(\frac{\mu}{\rho})_c$ malzemenin kütle azaltma katsayısını temsil eder. Atomik tesir kesiti ise denklem (2.26) ile hesaplanabilir.

$$\sigma_{t,a} = \frac{\sigma_{t,m}}{\sum_{i} n_{i}}$$
(2.26)

Denklem (2.26)'te yer alan $\sigma_{t,a}$ toplam atomik tesir kesitini, $\sigma_{t,m}$ toplam moleküler tesir kesitini, n_i malzemedeki toplam atom sayısını ifade eder. Toplam elektronik tesir kesiti denklem (2.27) ile belirlenebilir.

$$\sigma_{t,e} = \frac{1}{N} \sum_{i} \frac{f_i A_i}{Z_i} \left(\frac{\mu}{\rho}\right)_i \tag{2.27}$$

Denklem (2.27)'da yer alan $\sigma_{i,e}$ toplam elektronik tesir kesitini, A_i malzeme içerisindeki i elementinin atom ağırlığını, Z_i malzeme içerisindeki i. elementin atom numarası, f_i malzeme içerisindeki i. elementinin bolluk kesrini, $(\frac{\mu}{\rho})_i$ malzeme içindeki i. elementin kütle azaltma katsayısını temsil eder.

Birden fazla elementten meydana gelmiş bir materyal için etkin atom numarası (Z_{etk}), (2.26) eşitliğinde verilen toplam atomik tesir kesiti ($\sigma_{t,a}$)'nin (2.27) eşitliği ile verilen toplam elektronik tesir kesitine ($\sigma_{t,e}$) oranından hesaplanabilir (Singh vd., 2007).

$$Z_{etk} = \frac{\sigma_{t,a}}{\sigma_{t,e}}$$
(2.28)

Denklem (2.28)'den görüleceği gibi etkin atom numarasının tespit edilebilmesi için moleküler, atomik ve elektronik tesir kesitinin hesaplanması gerekmektedir. (Singh vd., 2007).

2.7.4. Yarı Kalınlık Değeri (YKD)

Başlangıçtaki gama ışını veya X-ışınının şiddetini yarıya düşürecek olan soğurucu malzeme kalınlığı yarı kalınlık değeri olarak adlandırılır ve lineer azaltma katsayısı yardımı ile hesaplanır.

$$YKD = \frac{\ln 2}{\mu} = \frac{0,693}{\mu}$$
(2.29)

2.7.5. Onda-Bir Kalınlık Değeri (OKD)

Radyasyona neden olan başlangıçtaki gama ışını veya X-ışınının şiddetini 1/10'a düşürecek olan soğurucu malzeme kalınlığına onda-bir kalınlık değeri olarak adlandırılır ve lineer azaltma katsayısı yardımı ile hesaplanır.

$$OKD = \frac{\ln 10}{\mu} = \frac{2,303}{\mu}$$
(2.30)

2.7.6. Ortalama Serbest Yol

Başlangıçta maruz kalınan radyasyon şiddetini % 36,8'e düşüren malzeme kalınlığı, ortalama serbest yol olarak bilinir (Ağar vd., 2019). Başka bir ifade ile ortalama serbest yol, fotonun hedef malzemenin atomları ile yaptığı çarpışmalar sırasında bir fotonun kat ettiği ortalama mesafedir. Malzemenin ortalama serbest yolu (OSY) lineer azaltma katsayısı yardımı belirlenir. OSY değeri eşitlik (2.30) yardımı ile hesaplanabilir.

$$OSY = \frac{1}{\mu} \tag{2.31}$$

2.7.7. Radyasyon Koruma Verimliliği

Zırhlamada tercih edilecek malzemenin tespitinde önemli bir diğer parametre radyasyon koruma verimliliğidir (RKV). Başlangıçtaki radyasyon şiddeti ve zırhlama malzemesini geçen radyasyon şiddeti yardımı ile hesaplanır.

$$RKV(\%) = (1 - \frac{I}{I_0}) \times 100$$
(2.32)

(2.32) eşitliğinde, I son durumdaki radyasyon şiddetini, I_0 başlangıçtaki radyasyon şiddetini temsil eder.

2.8. Hızlı Nötron Uzaklaştırma Tesir Kesiti

Nötronun madde ile etkileşim içinde bulunma olasılığını belirten parametrelerden biri hızlı nötron uzaklaştırma tesir kesiti (Σ_R) olarak adlandırılır. Mikroskobik tesir kesiti (σ) bir nötron ile bir atomun etkileşimde bulunma ihtimalidir ve birimi barn'dır (1 barn=10⁻²⁴ cm²). Makroskobik tesir kesiti (Σ) ise bir nötronun N adet atomla etkileşime girme olasılığıdır. Makroskobik tesir kesitinin birimi ise mikroskobik tesit kesitinden farklı olup 1/cm'dir. (2.33) eşitliği ile ifade edilir.

$$\Sigma = N\sigma \tag{2.33}$$

Nötronların atomlarla ile etkileşme ihtimali, nötron enerjisi artıkça hızlı bir şekilde azalır. Toplam makroskobik tesir kesiti her bir etkileşmenin mikroskobik tesir kesitlerinin toplamına da eşittir.

Gamma ışınları için hesaplanan lineer azaltma katsayına benzer olarak, nötron için de lineer azaltma katsayısı yazılabilir. Soğurucu kalınlığının artması ile malzemeden geçen nötron sayısının üstel olarak azalacağı gözlemlenecektir. Teorik olarak sadece μ yerine Σ yazmak yeterli olacaktır. Bu nedenle lineer azaltma katsayısı (2.34) eşitliği gibi yazılabilir (Wood, 1982).

$$\frac{I}{I_0} = e^{-\Sigma_{top} x}$$
(2.34)

Nötron radyasyonu zırhlama hesaplamalarında elektromanyetik radyasyonu zırhlama hesabına benzer olarak azalma üstel olmaktadır. Hızlı nötron uzaklaştırma tesir kesiti (Σ_R) , hızlı veya yüksek enerjili bir nötronun, madde içine geçebilen nötron akısından ayrılabilecek bir çarpışmayı yapma olasılığıdır. Yani gelen ilk nötronların uzaklaştırılması ile ilgili bir parametredir. Hızlı nötron uzaklaştırma tesir kesitinin hesaplanması sonucu hızlı nötronların uzaklaştırma hesaplamaları için yaklaşık bir metot geliştirilmiştir.

Toplam nötron tesir kesiti (T) soğurma ve saçılma sonucu oluşan nötron etkileşim tesir kesitlerinin toplamıdır. Oluşan tüm bu etkileşimler, nötron soğurma ile sonuçlanmaz. Bu nedenle $\Sigma_R < T$ olmaktadır. Bu yöntemde hidrojenle etkileşimleri soğurmaya eşit kabul ederek $\Sigma_R = T$ olarak ele alınır (El-Sayed ve Abdo, 2002). Literatürdeki çalışmalara göre 2 ile 12 MeV enerji aralığındaki nötronlar için etkin azaltma tesir kesitinin yaklaşık olarak sabit olduğu düşünülmektedir (Kaplan 1989).

Bileşik veya karışımlar için Σ_R (2.35) belirtilen eşitliğe göre ile hesaplanmaktadır (Kaplan, 1989; Wood, 1982).

$$\sum_{R} = \sum \rho_{i} \left(\frac{\Sigma_{R}}{\rho}\right)_{i} \tag{2.35}$$

Bu eşitliğe $\Sigma_{\rm R}$ hızlı nötron uzaklaştırma tesir kesitini, ρ_i i. elementin kısmi yoğunluğunu, $(\frac{\Sigma}{\rho})_i$ de, i.elementin kütle uzaklaştırma tesir kesidini temsil eder.

2.9. Betonun Bazı Mekanik Özellikleri

Basınç Dayanımı : Beton, belli bir bekleme süresini (kür süresi) geçirdikten sonra sertleşmeye başlar. Sertleştikten sonra betonun üzerine gelen yüklerin neden olabileceği şekil değişikliği ve kırılmaya karşı gösterdiği maksimum direnç beton basınç dayanımı olarak adlandırılır. Basınç dayanımlarını dikkate alarak betonları normal ve yüksek dayanımlı betonlar olarak 2 gruba ayrılır. Yüksek basınç dayanımlı betonlar genellikle köprü ve çok katlı binaların yapımında kullanılır. Basınç dayanımı düşük olan bir betonda su geçirgenliği fazla olmaktadır. Beton üretilirken kullanılan çimento/su oranı, çimento yapısı, kürlenme süreleri gibi etkenler betonun basınç dayanımı etkilemektedir. Betonun farklı kürlenme süresi dikkate alınır. Betonun, ilk gün basınç dayanımı % 16, 7. Gün % 40, 28. gün ise % 99 civarı olmaktadır. 28. günden sonra betonun basınç dayanımında ciddi bir artış olmamaktadır. Betonun basanç dayanımı eşitlik (2.36)'a göre hesaplanmaktadır. Birimi MPa'dır.

$$\sigma(MPa) = \frac{P}{A} \tag{2.36}$$

denklemde P kırılma kuvvetini (N) ve A numunenin yüzeyinin alanı (m²) temsil etmektedir.

Ultra Ses Geçiş Hızı : Ultrases dalgalarının testi yapılacak örnek içine problar (bir alıcı, bir verici) yardımıyla, ses dalgaları demetler halinde gönderilir. Bu sayede örnek veya binanın iç yapısının özelliğine göre farklılık, geçen ultrases dalgalarının değişimlerine göre betonun kusurlarının veya donatılarının belirlendiği tekniğe ultrases geçiş hızı yöntemi denmektedir.

Ultra ses geçiş hızı yöntemi betonda tahribata yol açmayan bir deney yöntemidir. Hataların veya eksikliklerin tespit edilmesinde kullanılır. Çok kalın olan beton örneklerinde bile güvenilir sonuçlar vermektedir. Çok küçük hataların bile tespit edilmesini sağladığı ve güvenilir olduğu için diğer tahribatsız yöntemlere göre daha çok tercih edilir. (2.37)'de verilen eşitliğe göre hesaplanır.

$$v = \frac{L}{t} \times 10^6 \tag{2.37}$$

Bu denklemde v ses geçiş hızını (m/s), L ses dalgalarının geçiş mesafesini (m) ve t ise ses dalgalarının geçiş süresini (μ s) göstermektedir (Mahmoud vd., 2018).

Schmidt Yüzey Sertliği (Schmidt Çekici) : 1940'ların sonlarında betonun yerinde tahribatsız muayenesi için bir indeks aparatı olarak geliştirilen Schmidt çekici, 1960'ların başından beri kaya mekaniği pratiğinde, esas olarak tek eksenli basınç dayanımını ve Young modülünü (Elastisite) tahmin etmek için kullanılmaktadır. Uzun geçmişi ve yaygın kullanımı göz önüne alındığında, Schmidt çekiç testi için standart yöntemlerin (<u>ISRM, 1978a</u>, ASTM 2001) belirli bir kaya türü veya beton türü için tutarlı ve güvenilir değerler ve tekrarlanabilir korelasyonlar sağlamadığı bilinmektedir.

Schmidt çekici (yay yüklü bir pistondan oluşur) bir yüzeye dikey olarak bastırıldığında, piston otomatik olarak serbest kalır. Pistonun darbe enerjisinin bir kısmı büyük ölçüde absorbsiyon (kaya malzemesinin piston ucunun altındaki plastik kısım üzerine yapılan iş) ve dönüşüm (ısı ve sese dönüşme) tarafından tüketilir. Kalan enerji, yüzeyin darbe

penetrasyon direncini (veya sertliğini) temsil eder ve pistonun geri tepmesini sağlar. Yüzey ne kadar sertse, penetrasyon süresi (yani, daha küçük darbe) veya derinlik o kadar kısadırb (yani, daha az iş veya enerji kaybı) ve geri tepme o kadar büyük olur (yani, daha küçük momentum değişimi). Geri sekmeden sonra pistonun kat ettiği mesafe (anahtar yayının ilk uzamasının yüzdesi olarak ifade edilir), yüzey sertliğinin bir indeksi olarak kabul edilen geri tepme değeri (R) olarak adlandırılır (Basu ve Aydın, 2004).

Yoğunluk : Numunelerin yoğunluklarının belirlenmesi için birim hacim ağırlık deneyi ASTM C 597'e göre yapılacaktır. Numuneler deneyden önce 0,0001 g hassasiyete sahip terazi kullanılarak tartılarak ve birim ağırlıkları hesaplanmıştır.

3. MATERYAL VE YÖNTEM

3.1. GEANT4 Simülasyon Kodu

GEANT4 (GEometry AND Tracking version 4), parçacıkların madde içinden geçişini tasvir eden bir simülasyon kodudur. C⁺⁺ programlama dilini kullanmaktadır. GEANT4, hem modelleme için hem de içeriği özelleştirilmiş farklı enerjilerde elektromanyetik ve hadronik etkileşimleri simüle edebilen birçok paket sunmaktadır. Düşük enerji aralığından (elektron volt mertebesi) çok yüksek enerji aralığına kadar (Teraelektron volt mertebesi) güvenilir sonuçlar vermektedir.Günümüzde birçok alanda etkin olarak kullanılmaktadır. Büyük ölçekli yüksek enerji ve nükleer fizik deneylerinin yanı sıra daha küçük ölçekli dedektörler de araştırma-geliştirme projelerinde sıklıkla tercih edilmektedir. Parçacık fiziği, nükleer fizik, optik, hızlandırıcı tasarımı, uzay mühendisliği gibi alanlarda kullanılmaktadır. GEANT4'ün ATLAS, BaBar, CMS, HARP, LHC, LHCb, BES III, DUNE, Müon g-2 gibi dünya çapında olan fizik deneylerine önemli katkısı olmuştur.

GEANT4, geometri işleme, izleme, dedektör tepkisi, çalışma yönetimi, görselleştirme için olanaklar içermektedir. Birçok fizik simülasyonu için bu olanaklar, düşük seviyeli ayrıntılara daha az zaman harcanması gerektiği ve araştırmacıların simülasyonun daha önemli yönlerine hemen başlayabilmeleri anlamına gelmektedir. Bu yönü ile GEANT4, araştırmacılara ciddi avantajlar sağlamaktadır (Allison vd., 2016).

Geometri İşleme : Geometri işleme, dedektörler, soğurucular vb. dahil olmak üzere deneyin fiziksel düzeninin ve bu düzenin deneydeki parçacıkların yolunu nasıl etkileyeceğini dikkate alan bir analizdir.

İzleme : İzleme , bir parçacığın madde içinden geçişini simüle etmektir.

Detektör tepkisi : Bir parçacık tasvir edilen detektör yapısından geçtiğinde kayıt yapmakta ve gerçek bir detektörün nasıl tepki vereceğini tahmin etmesidir.

Çalıştırma yöntemi : Çalıştırma yönetimi, her çalıştırmanın (bir dizi olayın) ayrıntılarını kaydetmenin yanı sıra, denemeyi çalıştırmalar arasında farklı yapılandırmalarda ayarlamadır.

Görselleştirme : GEANT4, görselleştirme için OpenGL ve Tcsh tabanlı tanıdık bir kullanıcı arabirimi dahil olmak üzere bir dizi seçenek sunar. GEANT4 temel histogramlama yapabilir. Gelişmiş histogramlama özelliklerinden yararlanmak için harici analiz araçları veya yazılımları gerektirir.

3.1.1. GEANT4 Kullanımı

Öncelikle bu simülasyon kodunu kullanabilmek için Linux veya Ubuntu işletim sistemlerinin bilgisayara yüklü olması gerekmektedir. Bu kısımda GEANT4 simülasyon kodu kullanılarak yapılan kütle azaltma hesaplamaları adım adım anlatılacaktır. Programın amaca hizmet edebilmesi için öncelikle enerji ve materyalin içeriğindeki bileşenlerin tanımlamalarının eksiksiz yapılması gerekmektedir. Tanımlamalar yapıldıktan hangi malzemeyi kullanacaksak malzemenin adını çağrıştıracak bir dosya açılır.

Gama için examples/elektromanyetik klasöründe yer alan. TestEm13 dosyası içerisinde yer alan 'PrimaryGeneratorAction.cc' veri tanımlama dosyası içerisinde kullanılacak olan radyasyon türü (gamma) ile parçağın veya ışının enerjisi tanımlanır. Nötron için aynı işlemler yapılır. Sadece nötronda dosya adı examples/hadronic olur. Aşağıda yapılan çalışmalardan bir örnek bulunmaktadır.

// \$Id: PrimaryGeneratorAction.cc,v 1.2 2022-01-29 16:44:45 gunter Exp \$
// GEANT4 tag \$Name: geant4-09-04-patch-01 \$
= G4ParticleTable::GetParticleTable()->FindParticle("gamma");
particleGun->SetParticleDefinition(particle);
particleGun->SetParticleEnergy(276*keV);
Daha_sonraki_kuumda_vina_TastEm13_iaerinda_bulunan_"DetectorConst.

Daha sonraki kısımda yine TestEm13 içerinde bulunan "DetectorConstruction.cc" dosyasını açarız. Burada kullanılacak olan materyalin veya elementlerin tanımlaması yapılır. Materyalin içeriğindeki elementin adı, simgesi, atom numarası, atom ağırlığı

yazılır. Materyale bir kod verilerek materyalin yoğunluğu ve elementlerin materyal içerisindeki yüzde olarak ağırlığı programa girilir. Son olarak materyalin kalınlığı tanımlanır. Programı çalıştırmak için ./TestEm13 komutu uç birimden girilir. Daha sonra Run/beamon/ komutu ile de istediğimiz sayıda foton hedef materyal üzerine gönderilir. Düzenlenen 'DetectorConstruction.cc' veri dosyasına bir örnek ve Run/beamon/ komutu ile dosya çalıştırıldıktan sonra elde edilen sonuç dosyası aşağıda verilmiştir.

The Box is 1 cm of B20

Material: B20 density: 2.2774 g/cm³ RadL: 5.371 cm Nucl.Int.Length: 31.591 cm Imean: 167.647 eV temperature: 293.15 K pressure: 1.00 atm ---> Element: Oxygen (O) Z = 8.0 N = 16 A = 16.000 g/mole ---> Isotope: O16 Z = 8 N = 16 A = 15.99 g/mole abundance: 99.757 % ---> Isotope: 017 Z = 8 N = 17 A = 17.00 g/mole abundance: 0.038 % ---> Isotope: 018 Z = 8 N = 18 A = 18.00 g/mole abundance: 0.205 % ElmMassFraction: 29.71 % ElmAbundance 52.01 % ---> Element: Sodium (Na) Z = 11.0 N = 23 A = 22.990 g/mole ---> Isotope: Na23 Z = 11 N = 23 A = 22.99 g/mole abundance: 100.000 % ElmMassFraction: 0.54 % ElmAbundance 0.66 % ---> Element: Magnezyum (Mg) Z = 12.0 N = 24 A = 24.312 g/mole ---> Isotope: Mg24 Z = 12 N = 24 A = 23.99 g/mole abundance: 78.990 % ---> Isotope: Mg25 Z = 12 N = 25 A = 24.99 g/mole abundance: 10.000 % ---> Isotope: Mg26 Z = 12 N = 26 A = 25.98 g/mole abundance: 11.010 % ElmMassFraction: 0.83 % ElmAbundance 0.96 % ---> Element: Alüminyum (Al) Z = 13.0 N = 27 A = 26.981 g/mole ---> Isotope: Al27 Z = 13 N = 27 A = 26.98 g/mole abundance: 100.000 % ElmMassFraction: 2.50 % ElmAbundance 2.60 % ---> Element: Silisyum (Si) Z = 14.0 N = 28 A = 28.085 g/mole ---> Isotope: Si28 Z = 14 N = 28 A = 27.98 g/mole abundance: 92.230 % ---> Isotope: Si29 Z = 14 N = 29 A = 28.98 g/mole abundance: 4.683 % ---> Isotope: Si30 Z = 14 N = 30 A = 29.97 g/mole abundance: 3.087 % ElmMassFraction: 7.96 % ElmAbundance 7.94 % ---> Element: kukurt (S) Z = 16.0 N = 32 A = 32.065 g/mole ---> Isotope: S32 Z = 16 N = 32 A = 31.97 g/mole abundance: 94.930 % ---> Isotope: S33 Z = 16 N = 33 A = 32.97 g/mole abundance: 0.760 % ---> Isotope: $S34 \ Z = 16 \ N = 34 \ A = 33.97 \ g/mole$ abundance: 4.290 % ---> Isotope: S36 Z = 16 N = 36 A = 35.97 g/mole abundance: 0.020 % ElmMassFraction: 0.96 % ElmAbundance 0.84 % ---> Element: Potasyum (K) Z = 19.0 N = 39 A = 39.098 g/mole ---> Isotope: K39 Z = 19 N = 39 A = 38.96 g/mole abundance: 93.258 % ---> Isotope: K40 Z = 19 N = 40 A = 39.96 g/mole abundance: 0.012 % ---> Isotope: K41 Z = 19 N = 41 A = 40.96 g/mole abundance: 6.730 % ElmMassFraction: 0.56 % ElmAbundance 0.40 % ---> Element: Kalsiyum (Ca) Z = 20.0 N = 40 A = 40.078 g/mole ---> Isotope: Ca40 Z = 20 N = 40 A = 39.96 g/mole abundance: 96.941 % ---> Isotope: Ca42 Z = 20 N = 42 A = 41.96 g/mole abundance: 0.647 %
---> Isotope: Ca43 Z = 20 N = 43 A = 42.96 g/mole abundance: 0.135 % ---> Isotope: Ca44 Z = 20 N = 44 A = 43.96 g/mole abundance: 2.086 % ---> Isotope: Ca46 Z = 20 N = 46 A = 45.95 g/mole abundance: 0.004 % ---> Isotope: Ca48 Z = 20 N = 48 A = 47.95 g/mole abundance: 0.187 % ElmMassFraction: 38.35 % ElmAbundance 26.80 % ---> Element: Demir (Fe) Z = 26.0 N = 56 A = 55.845 g/mole ---> Isotope: Fe54 Z = 26 N = 54 A = 53.94 g/mole abundance: 5.845 % ---> Isotope: Fe56 Z = 26 N = 56 A = 55.93 g/mole abundance: 91.754 % ---> Isotope: Fe57 Z = 26 N = 57 A = 56.94 g/mole abundance: 2.119 % ---> Isotope: Fe58 Z = 26 N = 58 A = 57.93 g/mole abundance: 0.282 % ElmMassFraction: 1.92 % ElmAbundance 0.96 % ---> Element: Bakır (Cu) Z = 29.0 N = 64 A = 63.546 g/mole ---> Isotope: Cu63 Z = 29 N = 63 A = 62.93 g/mole abundance: 69.170 % ---> Isotope: Cu65 Z = 29 N = 65 A = 64.93 g/mole abundance: 30.830 % ElmMassFraction: 14.17 % ElmAbundance 6.24 % ---> Element: Kalay (Sn) Z = 50.0 N = 119 A = 118.710 g/mole ---> Isotope: Sn112 Z = 50 N = 112 A = 111.91 g/mole abundance: 0.970 % ---> Isotope: Sn114 Z = 50 N = 114 A = 113.90 g/mole abundance: 0.660 % ---> Isotope: Sn115 Z = 50 N = 115 A = 114.90 g/mole abundance: 0.340 % ---> Isotope: Sn116 Z = 50 N = 116 A = 115.90 g/mole abundance: 14.540 % ---> Isotope: Sn117 Z = 50 N = 117 A = 116.90 g/mole abundance: 7.680 % ---> Isotope: Sn118 Z = 50 N = 118 A = 117.90 g/mole abundance: 24.220 % ---> Isotope: Sn119 Z = 50 N = 119 A = 118.90 g/mole abundance: 8.590 % ---> Isotope: Sn120 Z = 50 N = 120 A = 119.90 g/mole abundance: 32.580 % ---> Isotope: Sn122 Z = 50 N = 122 A = 121.90 g/mole abundance: 4.630 % ---> Isotope: Sn124 Z = 50 N = 124 A = 123.91 g/mole abundance: 5.790 % ElmMassFraction: 2.50 % ElmAbundance 0.59 %

Idle> /run/beamOn 10000000

======= *run summary*

The run is: 10000000 gamma of 276 keV through 1 cm of B20 (density: 2.2774 g/cm³) Process calls frequency ---> Transportation = 6782686 compt = 3048314 phot = 169000

Nb of incident particles unaltered after 1 cm of B20 : 6782686 over 10000000 incident particles. Ratio = 67.827 %

---> CrossSection per mass: 11.57 mm²/g

Verification from G4EmCalculator:

compt = 10.906 mm2/g phot = 577.32 um2/mg $total = 11.583 \text{ mm}^2/g$ Expected ratio of transmitted particles = 67.86 %

3.2. FLUKA Simülasyon Kodu

FLUKA kodu hadronların, ağır iyonların ve elektromanyetik parçacıkların veya ışınların malzeme ile etkileşimini ve taşınmasını simüle eden genel amaçlı bir Monte Carlo kodudur. Avrupa Nükleer Araştırma Örgütü (CERN) ve İtalyan Nükleer Fizik Enstitüsü (INFN) tarafından ortaklaşa geliştirilmiştir. Fortran programlama dilinde yazılan ve Linux işletim sisteminde kullanılan FLUKA kodu, parçacık taşınmasını ve parçacıkların madde ile etkileşimini hesaplamak için geliştirilmiştir. FLUKA kodu, herhangi bir hedefte elektromanyetik ve hadronik etkileşimleri ve parçacık taşınmasını fotonlar ve elektronlar da dahil olmak üzere 60 farklı parçacık-malzeme için etkileşimi simüle edebilir. Kod genellikle nükleer fizik ile ilgili güncel çalışmalarda kullanılır. Bunlardan bazıları dedektör tasarımı, hedef tasarımı, doz ve zırhlama hesaplamalarıdır (Böhlen vd, 2014).

FLUKA'nın tasarımında ve geliştirilmesinde birinci öncelik her zaman modern fiziğin uygulamalarıdır. Mümkün olduğunca mikroskobik modeller benimsenir. Tutarlılık tüm reaksiyon adımları veya reaksiyon türleri için sağlanır. Korunum yasaları her adımda uygulanır. Sonuç olarak, nihai tahminler tüm enerji değerleri ve hedefler için minimum serbest parametre setini içeren kombinasyonların hesaplamalarını yapmaktadır. FLUKA, 100 eV ila binlerce TeV enerjiye sahip nötron, nötrino, müon, hadronlar, ağır iyonlar, karşıt parçacıklar gibi parçacıkların etkileşimini yüksek doğrulukla simüle eder. FLUKA kodu aynı zamanda polarize olmuş fotonları da simüle edebilir (örn.senkrotron radyasyonu). Kararsız artık çekirdeklerden yayılan radyasyonun tahmin edilmesine yardımcı olabilir.

FLUKA'nın geliştirilmiş bir sürümünü kullanarak çok karmaşık geometrilerin bile üstesinden gelebilir. İyi bilinen Kombinatoryal Geometri (CG) paketi ile FLUKA CG paketi, elektrik ve manyetik alanların varlığında yüklü parçacıkları da doğru bir şekilde izlemek için tasarlanmıştır. Çoğu uygulama için kullanıcıdan programlama istemez. Kullanıcılar için çok sayıda Fortran arayüzü mevcuttur. Bu programda kullanılan FLAIR arayüzüdür. Aşağıda FLUKA'nın kullanım aşamaları ile ilgili bazı görseller Şekil 3.1' de verilmiştir.

er Citati •			10.144y 00.15 •		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			[untitled] - field		
Man Street L	Genterry C Run -	Pat	and the second		
the I have Connet		rote Chicat	Without Day (Carth	· A Channah	
ing total dimension	W @inseriel+ (@15	arge + 🐨 🖓 Connard		Correct Correct	
Cont / he have & family	ante Zin	ine iner* Pastant	· Mind Trees	C. S. Passa	
A PROPERTY OF A PROPERTY OF		and the second se	1110		
111			input		- A1
O MATERIAL	154	6.43	3.8873		
eneral contract					
A MATERIAL	854	- 44	3.9328		
onetry .					
ALIBERTAN O MATERIAL	P56	4.45	2.9145		
ysics					
ATTENDAL O MATERIAL	885	- 45.	× 3.0429		
A MATERIAL			a base		
prysg W PORTERIORE	P.P.L.				
- MATERIAL	aris.	1.45	3.7471		
burnes.					
ALBERTAM	88.20	- 45	3.6854		
A MATERIAL	191	* 50.	3.84013		
@ MATERIAL	P810	- 34	- 3.73%B		
A DESTRUCTION OF	and a	Card MATERS	AG.		
- PORTERIORL	P#13	define single	etarivent material of		
@ MATERIAL	10.25	11 (sighted to a	CONHOUND CAVE # 16		
		rempound			
@ MATERIAL	C83	= 54	3.82643		
A					
7271.8					
Lifest mass a	themation conficie	ent at different and	rgtes.		
218 IN					
A DAMAGE DESCRIPTION OF THE OWNER OF THE OWNER OF THE OWNER	Contract 2 Automber 3 Medical	1.04			

Şekil 3.1 FLUKA simülasyon programının kullanım aşamalarından bir gösterim. (Element, materyal ve yoğunluk tanımlanması)

anti-states -	E flair =		3.004 1917		• • • • • •
		+ /home/sheets/m	Program (TLAIR/special)	NULL Field - Field	
ACA UPPER	See Grant (Generaty) 3 has Grant (Contemp) 4 has Stant (Contemp) 4 has Stant and	A Rus DRus Hurs Vision Classe Classe Data Altri Cast	a Marcine Sur	a di Sanan Gener 1 ₁₀ Pana	i 🗇 Catolatar 🔸 🗤
		and the second second	Input	At the second #	
Conversion Conversion	CONTRACTOR CONTRACTO	1 -	Annu Companye -	fant MP Rectorquist Pancininguast	
	· · · · · · · · · · · · · · · · · · ·				
	ASSESS CONS	regists regists		(Trant)	1
· · · · · · · · · · · · · · · · · · ·	·				
FILKA 35, 50585.8	lar Euriert 40 Sele	ected 3 Yolai 48			* 5

Şekil 3.2 FLUKA simülasyon programının kullanım aşamalarında parçacık/ışın ve enerji tanımlanması

3.3. XCOM Bilgisayar Programı

XCOM 1 keV ila 100 GeV enerjilerde herhangi bir element, bileşik veya karışım ($Z \le$ 100) için saçılma, fotoelektrik soğurma ve çift oluşumu için foton tesir kesitlerini ve ayrıca toplam azaltma katsayılarını hesaplamak için kullanılabilecek bir web veritabanıdır. WinXCOM ise XCOM'un windows versiyonudur.Foton tesir kesitlerine ihtiyaç duyulan malzemelerin sayısı çok fazladır ve sürekli artmaktadır Saçılma ve soğurulma ile ilgili elde edilen veriler birçok bilimsel, mühendislik ve tıbbi uygulamada kullanılmaktadır (Storm vd., 1970).

Program, esnek olmayan saçılma, esnek saçılma, fotoelektrik soğurma ve çift oluşumu hesaplamalarında azaltma katsayılarının yanı sıra gerçekleşen olayların tesir kesit ve toplam tesir kesitlerinin değerlerini sağlamaktadır.

XCOM programını kullanabilmek için iki verinin eksiksiz girilmesi gerekmektedir. Bunlardan birincisi kullanılacak malzemenin türü (element, bileşik veya karışım, $Z \le$ 100) ikincisi hangi enerji değerlerinde inceleme yapılacağı belirtilmelidir. Elementler atom numaralarına veya kimyasal sembollerine göre seçilebilir. Yalnızca atom numarası 1'den 100'e kadar olan elementler kullanılabilir.

Bileşikler için kimyasal formüller, uygun büyük ve küçük harflerle standart kimyasal gösterimde girilmelidir. Ancak, donanım kısıtlamaları nedeniyle kimyasal formüller satıra yazılmalıdır. Örneğin, potasyum sülfat formülü K₂SO₄ olarak girilmelidir. Parantez, boşluk ve nokta kullanılamaz. Yalnızca tek bir atom türüne sahip moleküllerden oluşan maddeler, elementler veya bileşikler olarak belirlenebilir. Örneğin moleküler nitrojen, N sembolüne sahip bir "element" veya N₂ formülüne sahip bir "bileşik" olarak ele alınabilir. Karışımlar, "temel" bileşenlerden ve/veya "bileşik" bileşenlerden oluşabilir. Sonuçları değiştirmediği için bu bir kolaylıktır (Salamon ve Hubbell, 1987).

Kullanıcı, inceleme yapacağı materyalin içeriğindeki her bileşen için ağırlıkça yüzdesi belirtmelidir. Program daha sonra bu girdi verilerini, bireysel atomik bileşenlerin ağırlık kesirlerine her elementten gelen katkının toplamını hesaplamak için kullanır. Girdi verilerinde, ağırlıkça kesirlerin toplamı bire eşit değilse, girdi verileri kabul edilir ve program, ağırlıkça tüm kesirleri, toplamları bir olacak şekilde yeniden normalleştirir. Çıktı sonuçlarında elde edilen değerler, elementler için cm²/g ve barn/atom cinsinden, cinsinden sunulabilir. Bileşik veya karışımlarda ise cm²/g cinsindendir. İstenirse bu değerlerin grafik hali de alınabilmektedir.

3.4. Beton Numunelerin Hazırlanması Süreci

Bu çalışmada beton numunelerin hazırlanmasında çimento, su, bronz, pirinç, paslanmaz çelik ve bor karbür (B₄C) kullanılmıştır.

Numune üretiminde kullanılan pirinç tozu çinko ve bakırdan meydana gelen bir alaşımdır. Yoğunluğu 8,25 g/cm³'tür. Kullanılan pirinç tozunun saflık oranı en az %70 Cu-%30 Zn'dir. 44 µm boyuta sahip pirinç tozları kullanılmıştır.

Bronz tozu ise kalay ve bakırdan meydana gelen bir alaşımdır. Yoğunluğu 8,50-8,9 g/cm³'tür. Kullanılan bronz tozunun saflık oranı %85 Cu-%15 Sn'dir. 44 µm boyuta sahip bronz tozları kullanılmıştır.

Paslanmaz çelik tozu içerisinde %70 Fe, %16 Cr, %12 Ni ve %2 Mo barındırmaktadır. Yoğunluğu 7,9 g/cm³'tür. Kullanılan paslanmaz çelik tozunun saflık oranı %99'dur. 250 µm boyuta sahip paslanmaz çelik tozlarının tercih edilmiştir.

Elemental bor doğada bulunmamaktadır. Endüstriyel işlemler sonunda yüksek saflıkta bor zorlukla elde edilebilir. Çünkü bor, karbon ve başka elementlerle bileşikler oluşturmaktadır. Kullanılan B₄C bileşiğinin yoğunluğu 2,52 g/cm³'tür. 100 µm boyuta sahip bor karbür kullanılmıştır. Numune üretiminde kullanılan çimento CEM I 42.5 R tipi çimentodur. Yoğunluğu 3,1 g/cm³'tür. Ön deneysel çalışmalar sonucu su/çimento oranı 0,4 olacak şekilde belirlenmiştir.

Mekanik testler için 5x5x5 cm³ ölçüsünde numuneler üretilmiştir. Her bir alaşım, 900 gram çimentoya, çimento ağırlığının %10, %20, %30, %40 ve %50 oranında ikame edilmiştir. Örneğin B10 numunesinde 900 gram çimentoya, 360 gram su ve 90 gram bronz eklenmiştir. Her numuneden 3'er adet olmak üzere 45 adet numune üretilmiştir. Katkısız olarak da 3 adet numune olmak üzere mekanik testler için toplam 48 adet 5x5x5 cm³ beton numunesi (15 adet bronz katkılı, 15 adet pirinç katkılı, 15 adet paslanmaz çelik katkılı) üretilmiştir. Mekanik testlerde kullanılan herbir seride 3'er adet numunenin elde edilen aritmetik ortalama değerleri baz alınmıştır. Örneğin B10 kodlu numune için elde edilen değeri, 3 adet B10 kodlu numunenin aritmetik ortalamasıdır.

Radyasyon zırhlama (Gama radyasyonu) ölçümleri için 2 cm çapında 1 cm kalınlığında silindirik geometrili 15 adet bronz katkılı beton, 15 adet pirinç katkılı beton, 15 adet paslanmaz çelik katkılı beton, 3 adet de katkısız beton olmak üzere toplam 48 adet

numune üretilmiştir. Radyasyon numunelerinde yoğunluk ölçümleri Arşimed prensibine göre yapılmıştır.

Teorik hesaplamalar WinXCOM aracılığı ile yapıldıktan sonra kütle azaltma katsayısı bakımından radyasyona karşı en iyi sonucu veren numuneler belirlenmiştir. Bu aşamadan sonra en iyi sonucu veren alaşım katkılı beton numunesine, çimento ağırlığı değiştirilmeden, çimento ağırlığının %5, %10, %15 ve %20'si oranında B₄C ilavesi yapılarak 36 adet mekanik testler için, 36 adet de radyasyon (gama radyasyonu) hesaplamaları için üretilmiştir. Burada radyasyon numunelerin yoğunluğu her bir numune için aritmetik ortalama ile belirlenmiştir.

Beton hamuru yapım sürecinde homojenliğin artması için beton hamuru karıştırıcıda 6 dakika boyunca karıştırılmıştır. Sonrasında beton hamuru kalıplara dökülerek 24 saat boyunca oda şartlarında kurumaya bırakılmıştır. Numuneler kuruduktan sonra 28 gün bekleyecekleri kür havuzuna alınmıştır. Daha sonra numuneler kür havuzundan çıkartılarak 24 saat bekletildikten sonra mekanik ve radyasyon testlerine geçilmiştir. Bu süre geçtikten sonra üretilen beton numunelerin basınç dayanımı, ultra-ses geçiş hızı ve yoğunluk gibi fiziko-mekanik özellikleri analiz edilmiştir.

Radyasyon zırlama ve mekanik testler için üretilen numunelerin bileşimindeki elementlerin ağırlıkça yüzde oranları, numune yoğunlukları ve numune adlandırılmasını gösteren Tablo 3.1, Tablo 3.2, Tablo 3.3 ile üretilen numunelerin üretim aşamasındaki bazı görselleri Şekil 3.3, Şekil 3.4 ve Şekil 3.5'te verilmiştir.

Tablo 3.1'i açıklamak gerekirse, B30 kodlu numune çimento miktarının % 30'u kadar bronz katkısı olan numuneyi göstermektedir. B50B5 ise çimento miktarının % 50'si kadar bronz katkısı ile beraber çimento miktarının % 5'i kadar B₄C katkısı olan beton numuneyi, SB ise hiçbir katkısı olmayan saf beton numuneyi (kontrol numunesi) ifade eder.

Benzer şekilde Tablo 3.2'de P10 kodlu numune çimento miktarının %10'u kadar pirinç alaşımı katkısı olan numuneyi göstermektedir. P50B10 çimento miktarının %50'si kadar pirinç alaşımı katkısı ile beraber çimento miktarının % 10'u kadar B4C katkısı olan beton

numuneyi ifade etmektedir. SB ise hiçbir katkısı olmayan saf beton numuneyi ifade eder. Tablo 3.3'te C40 kodlu numune çimento miktarının %40'u kadar paslanmaz çelik alaşımı katkısı olan numuneyi temsil etmektedir. C50B20 çimento miktarının %50'si kadar paslanmaz çelik alaşımı katkısı ile beraber çimento miktarının %20'si kadar B₄C katkısı olan beton numuneyi ifade etmektedir. SB ise benzer şekilde hiçbir katkısı olmayan saf beton numuneyi (kontrol numunesi) ifade etmektedir.

Numune Elementin Malzeme İçerisindeki Ağırlıkça Oranı (%) 0 Al Si S Κ Na Mg SB 0,3565 0,0065 0,0099 0,0303 0,0953 0,0115 0,0067 B10 0,3212 0,0059 0,0090 0,0273 0,0868 0,0105 0,0061 **B20** 0,2971 0,0054 0,0083 0,0250 0,0796 0,0096 0,0057 **B30** 0,2743 0,0050 0,0077 0,0231 0,0735 0,0089 0,0051 **B40** 0,2537 0,0044 0,0071 0,0215 0,0681 0,0082 0,0048 **B50** 0,2377 0,0043 0,0066 0,0201 0,0637 0,0077 0,0045 B50B5 0,2304 0,0042 0,0064 0,0194 0,0612 0,0074 0,0043 B50B10 0,2229 0,0041 0,0062 0,0188 0,0597 0,0073 0,0042 B50B15 0,2161 0,0040 0,0060 0,0182 0,0579 0,0070 0,0041 B50B20 0,0562 0,0068 0,2097 0,0038 0,0059 0,0177 0,0039 Ca Fe Cu Sn B С $d (g/cm^3)$ SB 0,4603 0,0230 0,0000 0,0000 0,0000 0,0000 1,9334 **B10** 0,4215 0,0209 0,0773 0,0105 0,0000 0,0000 2,2081 B20 0,3836 0,0192 0,1417 0,0250 0,0000 0,0000 2,2774 B30 0,3541 0,0177 0,1962 0,0346 0,0000 0,0000 2,4013 0,0150 **B40** 0,3313 0,2429 0,0429 0,0000 0,0000 2,4398 B50 0,3068 0,0143 0,2833 0,0510 0,0000 0,0000 2,5787 B50B5 0,2970 0,0148 0,2742 0,0484 0,0253 0,0070 2,3289 B50B10 0,2875 0,0144 0,2656 0,0469 0,0489 0,0136 2,2334 B50B15 0,2790 0,0139 0,2576 0,0455 0,0712 0,0198 2,1751 B50B20 0,2707 0,0135 0,2500 0,0441 0,0921 0,0256 2,0532

Tablo 3. 1. Bronz katkılı beton numuneler ile bronz + B₄C katkılı beton numunelerin bileşimindeki elementlerin ağırlıkça yüzde oranları ve numune yoğunlukları.

Numune	Ele	mentin N	Aalzeme	İçerisind	leki Ağır	lıkça Ora	anı (%)
_	0	Na	Mg	Al	Si	S	K
SB	0,3565	0,0065	0,0099	0,0303	0,0953	0,0115	0,0067
P10	0,3212	0,0059	0,0090	0,0273	0,0868	0,0105	0,0061
P20	0,2971	0,0054	0,0083	0,0250	0,0796	0,0096	0,0057
P30	0,2743	0,0050	0,0077	0,0231	0,0735	0,0089	0,0051
P40	0,2537	0,0044	0,0071	0,0215	0,0681	0,0082	0,0048
P50	0,2377	0,0043	0,0066	0,0201	0,0637	0,0077	0,0045
P50B5	0,2304	0,0042	0,0064	0,0194	0,0612	0,0074	0,0043
P50B10	0,2229	0,0041	0,0062	0,0188	0,0597	0,0073	0,0042
P50B15	0,2161	0,0040	0,0060	0,0182	0,0579	0,0070	0,0041
P50B20	0,2097	0,0038	0,0059	0,0177	0,0562	0,0068	0,0039
	Ca	Fe	Cu	Zn	В	С	d (g/cm ³)
SB	0,4603	0,0230	0,0000	0,0000	0,0000	0,0000	1,9334
P10	0,4215	0,0209	0,0637	0,0272	0,0000	0,0000	2,2169
P20	0,3836	0,0192	0,1167	0,0500	0,0000	0,0000	2,3197
P30	0,3541	0,0177	0,1615	0,0692	0,0000	0,0000	2,3613
P40	0,3313	0,0150	0,2000	0,0857	0,0000	0,0000	2,4068
P50	0,3068	0,0143	0,2333	0,1000	0,0000	0,0000	2,4792
P50B5	0,2970	0,0148	0,2258	0,0967	0,0253	0,0070	2,3619
P50B10	0,2875	0,0144	0,2188	0,0938	0,0489	0,0136	2,2457
P50B15	0,2790	0,0139	0,2121	0,0910	0,0712	0,0198	2,2159
P50B20	0,2707	0,0135	0,2059	0,0882	0,0921	0,0256	2,1555

Tablo 3. 2. Pirinç katkılı beton numuneler ile pirinç alaşımı + B_4C katkılı beton numunelerin bileşimindeki elementlerin ağırlıkça yüzde oranları ve numune yoğunlukları

Tablo 3. 3. Paslanmaz çelik katkılı beton numuneler ile paslanmaz çelik + B₄C katkılı beton numunelerin bileşimindeki elementlerin ağırlıkça yüzde oranları ve numune yoğunlukları

Numune		Elen	nentin Malz	zeme İçerisi	ndeki Ağır	lıkça Oranı	(%)	
	0	Na	Mg	Al	Si	S	K	Ca
SB	0,3565	0,0065	0,0099	0,0303	0,0953	0,0115	0,0067	0,4603
C10	0,3212	0,0059	0,0090	0,0273	0,0868	0,0105	0,0061	0,4215
C20	0,2971	0,0054	0,0083	0,0250	0,0796	0,0096	0,0057	0,3836
C30	0,2743	0,0050	0,0077	0,0231	0,0735	0,0089	0,0051	0,3541
C40	0,2537	0,0044	0,0071	0,0215	0,0681	0,0082	0,0048	0,3313
C50	0,2377	0,0043	0,0066	0,0201	0,0637	0,0077	0,0045	0,3068
C50B5	0,2304	0,0042	0,0064	0,0194	0,0612	0,0074	0,0043	0,2970
C50B10	0,2229	0,0041	0,0062	0,0188	0,0597	0,0073	0,0042	0,2875
C50B15	0,2161	0,0040	0,0060	0,0182	0,0579	0,0070	0,0041	0,2790
C50B20	0,2097	0,0038	0,0059	0,0177	0,0562	0,0068	0,0039	0,2707

	Fe	Cr	Ni	Мо	В	С	d (g/cm ³)
SB	0,0230	0,0000	0,0000	0,0000	0,0000	0,0000	1,9334
C10	0,0846	0,0155	0,0100	0,0018	0,0000	0,0000	1,9793
C20	0,1358	0,0283	0,0183	0,0033	0,0000	0,0000	2,0138
C30	0,1792	0,0392	0,0259	0,0046	0,0000	0,0000	2,0427
C40	0,2164	0,0485	0,0314	0,0057	0,0000	0,0000	2,1106
C50	0,2487	0,0577	0,0366	0,0066	0,0000	0,0000	2,2245
C50B5	0,2407	0,0548	0,0355	0,0064	0,0253	0,0070	2,2985
C50B10	0,2331	0,0531	0,0344	0,0063	0,0489	0,0136	2,2113
C50B15	0,2261	0,0515	0,0333	0,0060	0,0712	0,0198	2,1369
C50B20	0,2194	0,0500	0,0324	0,0059	0,0921	0,0256	2,0355

Tablo 3. 3. Devam Paslanmaz çelik katkılı beton numuneler ile paslanmaz çelik + B4C katkılı beton numunelerin bileşimindeki elementlerin ağırlıkça yüzde oranları ve numune yoğunlukları

(a)

Şekil 3.3. (a) Kür havuzuna alınan numuneler (b) Üretim aşamasında kullanılan karıştırıcı (c) Mekanik testlerde kullanılan 5x5x5 cm ölçüsündeki kalıp örnekleri (d) Radyasyon deneylerinde kullanılan 1 cm kalınlığa sahip silindirik kalıp örnekleri

Şekil 3.4. Mekanik deneyler için üretilen numune örnekleri.

Şekil 3.5. Radyasyon zırhlama ölçümleri için üretilen numunelerden örnek. (Herbir rakam bir numune kodunu temsil etmektedir).

3.5. Gama Radyasyonu Zırhlama için Deneysel Süreç

Radyasyon zırhlama parametrelerini elde etmek için belirlenen ilk parametre kütle azaltma katsayısıdır. Deneysel olarak bu parametreyi elde etmek için HPGe dedektörü kullanılmıştır. HPGe dedektör, dedektör elektroniği (yüksek voltaj kaynağı, ön-yükseltici, yükseltici ve çok kanallı analizör (MCA), numune, radyoaktif kaynak ve kolimatörlerden oluşan deney geometrisi Şekil 3.6'da verilmiştir.

Şekil 3.6. Deney geometrisi

Deneylerde kullanılan HPGe dedektör 25 mm kristal genişliğine ve 70 mm aktif çapa sahiptir. Dedektörün rezülasyonu 5,9 keV'de 0,380 keV, 122 keV'de 0,585 keV ve 1330 keV'de 1,8 keV'dir. Dedektör, harici bir yüksek voltaj kaynağına, ayrıca sırasıyla ön-yükseltici, yükseltici ve çok kanallı analizöre bağlıdır. Üretilen elektron-hole çiftleri yüksek voltaj kaynağı yardımı ile toplanmıştır. Elde edilen sinyal önce ön-yükselticiye ardından lineer yükselticiye ve son olarak MCA yardımıyla gelen foton enerjisiyle orantılı olarak ilgili kanala toplanmıştır. Elektronik gürültüyü azaltmak, temel sayma seviyesinin minimumda tutmak için deneyler boyunca dedektör sıvı azot sıcaklığında bir tutulmuştur.

Sistemde kullanılan kolimatörler yardımıyla dar ışın geometrisinin kurulumu sağlanmıştır. Ayrıca sandviç ile (Kurşun-demir-alüminyum kolimatörler ile) temel sayma seviyesi minimumda tutulmuştur.

Ölçümlere başlamadan önce sistem çeşitli test kaynakları ile kalibre edilerek uygun çalışma kanalı seçilmiştir. Numuneler tek tek radyoaktif kaynağın önüne koyulup dedektörde sayımlar alınmıştır. Herbir numune için 1200 saniye ölçüm alınmıştır.

Sonrasında Maestro ara yüzü ile belirlenen enerji değerindeki pik alanları belirlenmiştir ve Microcal Origin 2018 (demo versiyon) ile pik alanlarının kontrolü sağlanmıştır. Sonrasın da ölçümlerden elde edilen pik alanları kullanılarak yapılan hesaplamalar neticesinde veriler elde edilmiştir. Elde edilen sonuçlar ışığında zırhlama için belirlenen parametrelerin deneysel ve teorik hesaplamaları gerçekleştirilmiştir.

Deneysel olarak elde edilen sonuçlar WinXCOM bilgisayar programı, GEANT4 ve FLUKA simülasyon paketlerinden elde edilen sonuçlar ile beraber değerlendirilmiştir. Simülasyon çalışmaları için 1 cm numune kalınlığı üzerine 10 milyon foton gönderilmiştir. Bu ölçümlere başlamadan önce üretilen numunelerin kimyasal bileşimlerinin ağırlıkça yüzde oranları ve numune yoğunlukları tanımlamaları simülasyon programlarına tanıtılmıştır.

Deneysel, WinXCOM, GEANT4 ve FLUKA aracılığı ile elde edilen tüm sonuçlar Microcal Origin 2018 programı (demo versiyonu) yardımı ile grafiklere dönüştürülmüştür. Tablo 3.4'te deneylerde kullanılan radyoaktif kaynakların aktiviteleri, yarı ömürleri ve foton enejileri verilmiştir.

Kaynak	Aktivite (kBq)	Yarı Ömür (yıl)	Enerji(keV)
²² Na	456	2,60	511,0
			1274,5
⁶⁰ Co	424	5,27	1173,2
			1332,5
¹³³ Ba	460	10,51	81,0
			276,4
			302,9
			356,0
			383,9
¹³⁷ Cs	473	30,07	661,7
²⁴¹ Am	460	432,20	59,5

Tablo 3. 4. Deneylerde kullanılan radyoizotoplar ve foton enerjileri

3.6 Nötron Radyasyonu Zırhlama İçin Teorik Süreç

Kullanılan numuneler için nötron radyasyonu parametreleri GEANT4 ve FLUKA aracılığı ile belirlenmiştir. Hedef numune üzerine 10 milyon nötron gönderilerek simüle çalışmaları gerçekleştirilmiştir. Bu aşamada, gama radyasyonu kütle azaltma katsayısı açısından en iyi sonucu veren numunelere (B50, P50 ve C50) çimento miktarının % 5, % 10, % 15 ve % 20 oranında B4C ikamesi yapılmıştır. Oluşan B4C katkılı yeni numunelerin bileşimindeki elementlerin ağırlıkça yüzde oranları teorik olarak, yoğunlukları ise Arşimed yöntemi ile belirlenmiştir. Belirlenen bu değerlerin gama radyasyonu zırhlama aşamasında olduğu gibi paket programlara tanımlamaları yapılmıştır. Sonraki aşamada B₄C katkılı numunelerden 1,1 MeV, 1.5 MeV, 2 MeV, 3 MeV, 4,5 MeV, 6 MeV, 7 MeV, 8 MeV ve 10 MeV enerji değerlerinde ve 1 cm numune kalınlığı için geçen nötron sayıları belirlenmiştir. 4,5 MeV enerji değerinde 1 cm, 2,5 cm, 5 cm, 7 cm, 10 cm, 13 cm, 16 cm, 20 cm ve 25 cm numune kalınlığında geçen nötron sayısı ve toplam makroskopik tesir kesiti belirlendi. Ayrıca GEANT4 yardımı ile yine 4,5 MeV'de ve 1 cm numune kalınlığında ortalama serbest yol değerleri hesaplanmıştır. GEANT4 ve FLUKA simülasyon paketlerinden elde edilen değerler Microcal Origin 2018 programı (demo versiyonu) aracılığı ile grafiklere dönüştürülmüştür. Son olarak B₄C katkılı numunelerin hızlı nötron uzaklaştırma tesir kesitleri hesaplanmış ve sonuçlar grafiklere dönüştürülmüştür.

3.7 Numunelerin Mekanik Özelliklerin İncelenmesi

Üretilen tüm numunelerin yoğunluk, basınç dayanımı, ultra ses geçiş hızı ve schmidt yüzey sertliği hesaplamaları yapılmıştır. Basınç dayanımı TS EN 12390-2010'a standartlarına göre yapılmıştır. Basınç dayanımının tespiti için Bingöl Üniversitesi İnşaat Mühendisliği Laboratuarında bulunan 300 tona kadar dayanıklı basınç presi kullanılmıştır. Her bir numune serisinden 3 adet üretildiği için basınç dayanımı testleri sonucunda ortalama bir değer elde edilmiştir. Şekil 3.7'de basınç dayanım deneylerinde kullanılan basınç presi görülmektedir.

Şekil 3.7. Deneylerde kullanılan basınç presi

Ultra ses geçiş hızı için ise Bingöl Üniversitesi Teknik Bilimler MYO İnşaat Programı Laboratuarında bulunan Posso cihazı kullanılmıştır. TS EN 12504-4:2012 standartlarına göre testler gerçekleştirilmiştir. Teste başlamadan her bir numunenin bir yüzü işaretlenmiştir. Yüzeyin maksimum oranda pürüzsüz ve temiz olması için yüzeyler özel bir jel ile temizlenmiştir. Her bir numune serisinden 3 adet üretildiği için ultra ses geçiş hızı deneylerinde 3 adet numunenin ortalama bir değeri elde edilmiştir. Şekil 3.8'de ultra ses geçiş hızı deneylerinde kullanılan Posso cihazı görülmektedir.

Şekil 3.8. Deneylerde kullanılan Posso ultra ses geçiş hızı cihazı

Schmidt yüzey sertliği için Schmidt çekici deneyleri ISRM (1981) standartları baz alınarak yapılmıştır. Üretilen 50 mm genişliğindeki numuneye Schmidt çekici ile üzerine 1 vuruş gerçekleştirilmiştir. Yapılan çalışmada L tipi Scmidt çekici kullanılmıştır. Bu işlem aynı özellikteki 3 adet numuneye uygulanması sonucu ortalama bir değer alınarak belirlenmiştir. Şekil 3.9'da Schmidt yüzey sertliği deneylerinde kullanılan Schmidt çekici cihazı görülmektedir.

Şekil 3.9. Deneylerde kullanılan Schmidt yüzey çekici cihazı

4. BULGULAR VE TARTIŞMA

Bronz, pirinç ve paslanmaz çelik ile belirlenen oranlarda katkılandırılmış betonun gama radyasyonu azaltma kabiliyetlerini gösteren parametreler, 1 cm numune kalınlığında ve Tablo 3.4'de verilen foton enerji değerinde deneysel, teorik (WinXCOM) ve iki farklı Monte Carlo simülasyon kodu (GEANT4 ve FLUKA) aracılığı ile incelenmiştir. İncelenen parametreler μ , μ_m , YKD, OKD, OSY, Z_{etk} ve RKV olmak üzere 7 adet parametredir. Denklem (2.22) kullanılarak hesaplanan μ değeri yardımı ile sırasıyla eşitlik (2.29), (2.30), (2.31) kullanılarak YKD, OKD, OSY parametreleri hesaplanmıştır. RKV I ve I₀'ın bilinmesi ile hesaplanan bir parametredir. Z_{etk} denklem (2.28) kullanılarak belirlenmiştir. Bunun dışında gama radyasyonu zırhlama parametrelerinde önemli bir parametre olan kütle azaltma katsayısı açısından en verimli sonucu veren numunelere B₄C katkısı yapılarak üretilen numunelerin Tablo 3.4'de verilen enerji değerlerinde μ , μ_m , YDK, ODK, OSY, Z_{etk} ve RKV parametreleri incelenmiştir. Sonuçlar ayrıntılı olarak Tablo 4.1-4.42'de verilmiş, elde edilen sonuçların daha anlaşılır olması amacı ile sonuçlar grafiğe dönüştürülüp karşılaştırmalar yapılmıştır. Grafikler Şekil 4.1 - 4.42'de verilmiştir.

Ayrıca seçilen farklı nötron enerji değerlerinde ve farklı numune kalınlıklarında GEANT4 ve FLUKA yardımı ile nötron geçirgenliği incelenmiştir. Elde edilen sonuçlar tablo haline getirilmiş ve grafiklere dönüştürülmüştür. Üretilen B₄C katkılı beton numunelerin 1 cm kalınlıkta ve 4,5 MeV nötron enerjisi değerinde ortalama serbest yol değerleri GEANT4 aracılığı ile belirlenmiştir. B₄C katkılı tüm numuneler için hızlı nötron uzaklaştırma tesir kesitleri hesaplanmış ve elde edilen sonuçların grafikleri Origin 2018 (demo) yardımı ile elde edilmiştir.

Bütün bunlara ek olarak numune üretimi yapıldıktan sonra üretilen numunelerin yoğunlukları deneysel olarak belirlenmiştir. Bunun yanında üretilen numunelerin basınç dayanımı, ultra ses geçiş hızı ve Schmidt yüzey sertliği incelenmiş, sonuçlar tablo haline getirilerek grafiklere dönüştürülmüş ve karşılaştırmalar yapılmıştır.

Üretilen numuneler için, deneysel, teorik ve simülasyon kodlarından elde edilen bulgular sırasıyla gama radyasyonu zırhlama parametreleri, nötron radyasyonu zırhlama parametreleri ve üretilen betonun fiziko-mekanik parametreleri aşağıda sunulmuştur.

4.1 Kütle Azaltma Katsayılarına Ait Araştırma Bulguları

Kütle azaltma katsayısı, lineer azaltma katsayısının malzemenin yoğunluğuna oranlanması ile elde edilebilir. Ayrıca denklem (2.23) ile de belirlenebilir. Lineer azaltma katsayısına göre daha çok tercih edilen bir parametredir. Gelen radyasyonun enerjisi ve malzeme içerisindeki elementlerin atom numarası ile ilişkili bir parametredir. Malzemenin hacimce veya ağırlıkça oranının tanımlandığı durumlarda malzemenin elementel bileşimi hesaplanabilir. Malzeme bileşiminde birden fazla element varsa kütle azaltma katsayısı teorik olarak karışım kuralı ile belirlenir. Bronz, pirinç, paslanmaz çelik veya B₄C ile belli oranlarda katkılanmış beton numuneler için teorik kütle azaltma katsayısı değerleri karışım kuralı yardımı ile elde edilmiştir. WinXCOM programı kullanılarak belirlenen teorik değerler ile deneysel olarak elde edilen kütle azaltma katsayıları karşılaştırılmıştır. Bunun yanında Monte Carlo simülasyon kodu olan GEANT4 ve FLUKA kodları kullanılarak elde edilen kütle azaltma katsayıları ile de karşılaştırılmışlardır. Üretilen beton numunelerin deneysel, teorik, GEANT4 ve FLUKA yardımı ile elde edilen kütle azaltma katsayıları ile de karşılaştırılmışlardır. Üretilen beton numunelerin deneysel, teorik, GEANT4 ve FLUKA yardımı ile elde edilen kütle azaltma katsayıları ile di karşılaştırılmışlardır. Üretilen beton numunelerin deneysel, teorik, GEANT4 ve FLUKA yardımı ile elde edilen kütle azaltma katsayıları ile di karşılaştırılmışlardır. Üretilen beton numunelerin deneysel, teorik, GEANT4 ve FLUKA yardımı ile elde edilen kütle azaltma katsayıları ile di karşılaştırılmıştır.

Enerji			SB		B10				
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	$0,4545 \pm 0,0101$	0,4568	0,4914	0,4570	0,6130±0,0136	0,6323	0,5760	0,6327	
81,0	$0,2837{\pm}0,0064$	0,2726	0,2450	0,2726	$0,3421 \pm 0,0081$	0,3450	0,3125	0,3452	
276,4	$0,1143 \pm 0,0057$	0,1131	0,1103	0,1131	$0,1123\pm0,0053$	0,1145	0,1111	0,1144	
302,9	$0,1137\pm0,0034$	0,1087	0,1064	0,1086	$0,1146\pm0,0036$	0,1097	0,1068	0,1096	
356,0	$0,0982{\pm}0,0023$	0,1015	0,0999	0,1016	$0,0997{\pm}0,0022$	0,1018	0,0999	0,1017	
383,9	$0,0941 \pm 0,0050$	0,0983	0,0969	0,0984	$0,0953{\pm}0,0055$	0,0984	0,0969	0,0984	
511,0	$0,0936\pm0,0024$	0,0869	0,0865	0,0867	$0,0835 \pm 0,0022$	0,0866	0,0861	0,0865	
661,7	$0,0800 \pm 0,0017$	0,0774	0,0774	0,0773	$0,0797{\pm}0,0017$	0,0770	0,0770	0,0769	
1173,2	$0,0586 \pm 0,0016$	0,0587	0,0588	0,0586	$0,0553{\pm}0,0013$	0,0583	0,0583	0,0582	
1274,5	$0,0557{\pm}0,0014$	0,0563	0,0565	0,0564	$0,0567{\pm}0,0014$	0,0559	0,0560	0,0559	
1332,5	$0,0552{\pm}0,0012$	0,0550	0,0552	0,0550	$0,0560{\pm}0,0013$	0,0546	0,0547	0,0545	

Tablo 4. 1. Bronz ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş kütle azaltma katsayısı (cm² g⁻¹) değerleri

Enerji		B20)		B30				
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	0,7371±0,0172	0,7785	0,7144	0,7793	0,8765±0,0241	0,9023	0,8323	0,9034	
81,0	0,3932±0,0088	0,4053	0,3688	0,4057	0,4550±0,0118	0,4563	0,4168	0,4565	
276,4	0,1221±0,0067	0,1157	0,1119	0,1155	0,1138±0,0064	0,1166	0,1125	0,1164	
302,9	0,1147±0,0037	0,1104	0,1073	0,1104	0,1059±0,0035	0,1111	0,1077	0,1109	
356,0	0,1083±0,0025	0,1021	0,0999	0,1020	0,0947±0,0022	0,1023	0,1000	0,1022	
383,9	0,0976±0,0057	0,0986	0,0968	0,0985	0,1038±0,0055	0,0987	0,0967	0,0985	
511,0	0,0821±0,0021	0,0864	0,0857	0,0864	0,0816±0,0021	0,0862	0,0855	0,0862	
661,7	0,0788±0,0017	0,0766	0,0793	0,0767	0,0744±0,0016	0,0764	0,0763	0,0763	
1173,2	0,0630±0,0015	0,0579	0,0581	0,0579	0,0590±0,0014	0,0577	0,0577	0,0576	
1274,5	0,0522±0,0013	0,0555	0,0557	0,0555	0,0531±0,0013	0,0553	0,0555	0,0552	
1332,5	0,0531±0,0012	0,0543	0,0544	0,0542	$0,0553{\pm}0,0012$	0,0540	0,0541	0,0540	
Enerji	_	B40)			B50			
Enerji (keV)	Deneysel	B40 Teorik	GEANT4	FLUKA	Deneysel	B50 Teorik	GEANT4	FLUKA	
Enerji (keV) 59,5	Deneysel 0,9600±0,0356	B40 Teorik 1,0084	GEANT4 0,9309	FLUKA 1,0084	Deneysel 1,0384±0,0365	B50 Teorik 1,1003	GEANT4 1,0181	FLUKA 1,1016	
Enerji (keV) 59,5 81,0	Deneysel 0,9600±0,0356 0,5131±0,0124	B40 Teorik 1,0084 0,5001	GEANT4 0,9309 0,4563	FLUKA 1,0084 0,5003	Deneysel 1,0384±0,0365 0,5161±0,0124	B50 Teorik 1,1003 0,5380	GEANT4 1,0181 0,4927	FLUKA 1,1016 0,5385	
Enerji (keV) 59,5 81,0 276,4	Deneysel 0,9600±0,0356 0,5131±0,0124 0,1176±0,0061	B40 Teorik 1,0084 0,5001 0,1175	GEANT4 0,9309 0,4563 0,1128	FLUKA 1,0084 0,5003 0,1174	Deneysel 1,0384±0,0365 0,5161±0,0124 0,1120±0,0054	B50 Teorik 1,1003 0,5380 0,1182	GEANT4 1,0181 0,4927 0,1135	FLUKA 1,1016 0,5385 0,1181	
Enerji (keV) 59,5 81,0 276,4 302,9	Deneysel 0,9600±0,0356 0,5131±0,0124 0,1176±0,0061 0,1077±0,0033	B40 Teorik 1,0084 0,5001 0,1175 0,1116	GEANT4 0,9309 0,4563 0,1128 0,1077	FLUKA 1,0084 0,5003 0,1174 0,1115	Deneysel 1,0384±0,0365 0,5161±0,0124 0,1120±0,0054 0,1189±0,0037	B50 Teorik 1,1003 0,5380 0,1182 0,1121	GEANT4 1,0181 0,4927 0,1135 0,1082	FLUKA 1,1016 0,5385 0,1181 0,1121	
Enerji (keV) 59,5 81,0 276,4 302,9 356,0	Deneysel 0,9600±0,0356 0,5131±0,0124 0,1176±0,0061 0,1077±0,0033 0,1065±0,0024	B40 Teorik 1,0084 0,5001 0,1175 0,1116 0,1026	GEANT4 0,9309 0,4563 0,1128 0,1077 0,0998	FLUKA 1,0084 0,5003 0,1174 0,1115 0,1025	Deneysel 1,0384±0,0365 0,5161±0,0124 0,1120±0,0054 0,1189±0,0037 0,1021±0,0023	B50 Teorik 1,1003 0,5380 0,1182 0,1121 0,1027	GEANT4 1,0181 0,4927 0,1135 0,1082 0,1000	FLUKA 1,1016 0,5385 0,1181 0,1121 0,1026	
Enerji (keV) 59,5 81,0 276,4 302,9 356,0 383,9	Deneysel 0,9600±0,0356 0,5131±0,0124 0,1176±0,0061 0,1077±0,0033 0,1065±0,0024 0,0971±0,0054	B40 Teorik 1,0084 0,5001 0,1175 0,1116 0,1026 0,0988	GEANT4 0,9309 0,4563 0,1128 0,1077 0,0998 0,0966	FLUKA 1,0084 0,5003 0,1174 0,1115 0,1025 0,0988	Deneysel 1,0384±0,0365 0,5161±0,0124 0,1120±0,0054 0,1189±0,0037 0,1021±0,0023 0,0941±0,0047	B50 Teorik 1,1003 0,5380 0,1182 0,1121 0,1027 0,0988	GEANT4 1,0181 0,4927 0,1135 0,1082 0,1000 0,0966	FLUKA 1,1016 0,5385 0,1181 0,1121 0,1026 0,0988	
Enerji (keV) 59,5 81,0 276,4 302,9 356,0 383,9 511,0	Deneysel 0,9600±0,0356 0,5131±0,0124 0,1176±0,0061 0,1077±0,0033 0,1065±0,0024 0,0971±0,0054 0,0857±0.0023	B40 Teorik 1,0084 0,5001 0,1175 0,1116 0,1026 0,0988 0,0861	GEANT4 0,9309 0,4563 0,1128 0,1077 0,0998 0,0966 0,0851	FLUKA 1,0084 0,5003 0,1174 0,1115 0,1025 0,0988 0,0861	Deneysel 1,0384±0,0365 0,5161±0,0124 0,1120±0,0054 0,1189±0,0037 0,1021±0,0023 0,0941±0,0047 0,0845±0,0022	B50 Teorik 1,1003 0,5380 0,1182 0,1121 0,1027 0,0988 0,0859	GEANT4 1,0181 0,4927 0,1135 0,1082 0,1000 0,0966 0,0851	FLUKA 1,1016 0,5385 0,1181 0,1121 0,1026 0,0988 0,0859	
Enerji (keV) 59,5 81,0 276,4 302,9 356,0 383,9 511,0 661,7	Deneysel 0,9600±0,0356 0,5131±0,0124 0,1176±0,0061 0,1077±0,0033 0,1065±0,0024 0,0971±0,0054 0,0857±0.0023 0,0765±0,0017	B40 Teorik 1,0084 0,5001 0,1175 0,1116 0,1026 0,0988 0,0861 0,0761	GEANT4 0,9309 0,4563 0,1128 0,1077 0,0998 0,0966 0,0851 0,0759	FLUKA 1,0084 0,5003 0,1174 0,1115 0,1025 0,0988 0,0861 0,0761	Deneysel 1,0384±0,0365 0,5161±0,0124 0,1120±0,0054 0,1189±0,0037 0,1021±0,0023 0,0941±0,0047 0,0845±0,0022 0,0744±0,0016	B50 Teorik 1,1003 0,5380 0,1182 0,1121 0,1027 0,0988 0,0859 0,0759	GEANT4 1,0181 0,4927 0,1135 0,1082 0,1000 0,0966 0,0851 0,0757	FLUKA 1,1016 0,5385 0,1181 0,1121 0,1026 0,0988 0,0859 0,0759	
Enerji (keV) 59,5 81,0 276,4 302,9 356,0 383,9 511,0 661,7 1173,2	Deneysel 0,9600±0,0356 0,5131±0,0124 0,1176±0,0061 0,1077±0,0033 0,1065±0,0024 0,0971±0,0054 0,0857±0.0023 0,0765±0,0017 0,0598±0,0014	B40 Teorik 1,0084 0,5001 0,1175 0,1116 0,1026 0,0988 0,0861 0,0761 0,0574	GEANT4 0,9309 0,4563 0,1128 0,1077 0,0998 0,0966 0,0851 0,0759 0,0574	FLUKA 1,0084 0,5003 0,1174 0,1175 0,1025 0,0988 0,00861 0,0761 0,0573	Deneysel 1,0384±0,0365 0,5161±0,0124 0,1120±0,0054 0,1189±0,0037 0,1021±0,0023 0,0941±0,0047 0,0845±0,0022 0,0744±0,0016 0,0569±0,0013	B50 Teorik 1,1003 0,5380 0,1182 0,1121 0,1027 0,0988 0,0859 0,0759 0,0572	GEANT4 1,0181 0,4927 0,1135 0,1082 0,1000 0,0966 0,0851 0,0757 0,0571	FLUKA 1,1016 0,5385 0,1181 0,1121 0,1026 0,0988 0,0859 0,0759 0,0571	
Enerji (keV) 59,5 81,0 276,4 302,9 356,0 383,9 511,0 661,7 1173,2 1274,5	Deneysel 0,9600±0,0356 0,5131±0,0124 0,1176±0,0061 0,1077±0,0033 0,1065±0,0024 0,0971±0,0054 0,0857±0.0023 0,0765±0,0017 0,0598±0,0014 0,0563±0,0014	B40 Teorik 1,0084 0,5001 0,1175 0,1116 0,1026 0,0988 0,0861 0,0761 0,0574 0,0550	GEANT4 0,9309 0,4563 0,1128 0,1077 0,0998 0,0951 0,0759 0,0551	FLUKA 1,0084 0,5003 0,1174 0,1115 0,1025 0,0988 0,00861 0,0761 0,0573 0,0550	Deneysel 1,0384±0,0365 0,5161±0,0124 0,1120±0,0054 0,1189±0,0037 0,1021±0,0023 0,0941±0,0047 0,0744±0,0016 0,0569±0,0013 0,0561±0,0014	B50 Teorik 1,1003 0,5380 0,1182 0,1121 0,1027 0,0988 0,0859 0,0759 0,0572 0,0548	GEANT4 1,0181 0,4927 0,1135 0,1082 0,1000 0,0966 0,0951 0,0757 0,0549	FLUKA 1,1016 0,5385 0,1181 0,1121 0,1026 0,0988 0,09859 0,0759 0,0571 0,0547	

Tablo 4.1. Devamı Bronz ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş kütle azaltma katsayısı (cm² g⁻¹) değerleri

Tablo 4. 2. Pirinç ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş kütle azaltma katsayısı (cm² g⁻¹) değerleri

Enerji		SE	3		P10				
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	$0,4545\pm0,0101$	0,4568	0,4914	0,4570	$0,5698 {\pm} 0,0129$	0,5677	0,5135	0,5681	
81,0	0,2837±0,0064	0,2726	0,2450	0,2726	$0,3089{\pm}0,0074$	0,3171	0,2857	0,3172	
276,4	$0,1143 \pm 0,0057$	0,1131	0,1103	0,1131	$0,1081{\pm}0,0058$	0,1137	0,1104	0,1136	
302,9	0,1137±0,0034	0,1087	0,1064	0,1086	$0,1077\pm0,0035$	0,1090	0,1064	0,1091	
356,0	$0,0982{\pm}0,0023$	0,1015	0,0999	0,1016	$0,1063{\pm}0,0024$	0,1014	0,0997	0,1013	
383,9	$0,0941 \pm 0,0050$	0,0983	0,0969	0,0984	0,0967±0,0049	0,0981	0,0967	0,0981	
511,0	0,0936±0,0024	0,0869	0,0865	0,0867	$0,0878 {\pm} 0,0022$	0,0865	0,0860	0,0864	
661,7	$0,0800\pm0,0017$	0,0774	0,0774	0,0773	$0,0787 \pm 0,0017$	0,0769	0,0769	0,0769	
1173,2	$0,0586{\pm}0,0016$	0,0587	0,0588	0,0586	$0,0602{\pm}0,0014$	0,0583	0,0583	0,0582	
1274,5	$0,0557{\pm}0,0014$	0,0563	0,0565	0,0564	$0,0579{\pm}0,0015$	0,0559	0,0560	0,0558	
1332,5	$0,0552{\pm}0,0012$	0,0550	0,0552	0,0550	0,0563±0,0013	0,0546	0,0550	0,0546	
Enerji		P20)			P30)		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	0,6299±0,0153	0,6602	0,6001	0,6607	0,7174±0,0167	0,7384	0,6735	0,7393	
81,0	0,3413±0,0083	0,3541	0,3197	0,3545	0,3720±0,0091	0,3855	0,3484	0,3856	
276,4	0,1150±0,0066	0,1141	0,1104	0,1142	0,1126±0,0068	0,1145	0,1106	0,1144	
302,9	$0,\!1088{\pm}0,\!0035$	0,1093	0,1063	0,1093	0,1132±0,0036	0,1095	0,1064	0,1095	
356,0	$0,1067{\pm}0,0024$	0,1014	0,0994	0,1014	$0,1055{\pm}0,0024$	0,1014	0,0992	0,1013	
383,9	0,0963±0,0049	0,0980	0,0963	0,0980	$0,0963{\pm}0,0049$	0,0979	0,0961	0,0980	
511,0	$0,0864 \pm 0,0023$	0,0862	0,0857	0,0862	$0,0829{\pm}0,0022$	0,0859	0,0854	0,0858	
661,7	0,0743±0,0016	0,0766	0,0765	0,0766	$0,0763{\pm}0,0017$	0,0763	0,0761	0,0762	
1173,2	$0,0588{\pm}0,0014$	0,0580	0,0580	0,0579	$0,0610\pm 0,0014$	0,0577	0,0577	0,0577	
1274,5	$0,0588{\pm}0,0015$	0,0556	0,0557	0,0556	$0,0566{\pm}0,0014$	0,0553	0,0554	0,0553	
1332,5	0,0566±0,0013	0,0543	0,0544	0,0543	0,0529±0,0012	0,0541	0,0541	0,0540	
Enerji		P40				P50)		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	$0,7675 \pm 0,0208$	0,8055	0,7340	0,8055	0,8175±0,0213	0,8636	0,7907	0,8650	
81,0	$0,3980 \pm 0,0115$	0,4123	0,3721	0,4122	$0,4236{\pm}0,0109$	0,4356	0,3947	0,4358	
276,4	$0,1106\pm0,0065$	0,1149	0,1106	0,1148	0,1159±0,0054	0,1152	0,1108	0,1151	
302,9	$0,1097{\pm}0,0032$	0,1096	0,1061	0,1096	$0,\!1067\pm\!0,\!0034$	0,1098	0,1063	0,1098	
356,0	$0,1006\pm0,0023$	0,1014	0,0988	0,1014	$0,0969{\pm}0,0022$	0,1013	0,0988	0,1013	
383,9	$0,0954{\pm}0,0053$	0,0978	0,0957	0,0979	$0,0920{\pm}0,0060$	0,0978	0,0958	0,0977	
511,0	$0,0815{\pm}0,0021$	0,0857	0,0849	0,0857	$0,0812{\pm}0,0022$	0,0856	0,0847	0,0855	
661,7	0,0797±0,0018	0,0761	0,0758	0,0760	0,0734±0,0016	0,0758	0,0756	0,0758	
1173,2	0,0595±0,0014	0,0575	0,0574	0,0575	0,0568±0,0013	0,0573	0,0573	0,0572	
1274,5	$0,0566 \pm 0,0014$	0,0551	0,0551	0,0551	$0,0550{\pm}0,0014$	0,0549	0,0550	0,0548	
1332,5	0,0558±0,0013	0,0539	0,0538	0,0538	0,0570±0,0013	0,0537	0,0537	0,0537	

Tablo 4. 3. Paslanmaz çelik ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş karşılaştırmalı kütle azaltma katsayısı (cm² g⁻¹) değerleri

Enerji	_	S	В			C10		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,4545±0,0101	0,4568	0,4914	0,4570	0,5025±0,0114	0,5321	0,5556	0,5323
81,0	0,2837±0,0064	0,2726	0,2450	0,2726	0,2938±0,0071	0,3026	0,3038	0,3027
276,4	0,1143±0,0057	0,1131	0,1103	0,1131	0,1100±0,0053	0,1134	0,1120	0,1133
302,9	0,1137±0,0034	0,1087	0,1064	0,1086	0,1135±0,0038	0,1088	0,1078	0,1088
356,0	0,0982±0,0023	0,1015	0,0999	0,1016	0,0985±0,0022	0,1014	0,1009	0,1013
383,9	$0,0941 \pm 0,0050$	0,0983	0,0969	0,0984	0,0960±0,0055	0,0981	0,0979	0,0982
511,0	0,0936±0,0024	0,0869	0,0865	0,0867	0,0828±0,0021	0,0865	0,0869	0,0864
661,7	$0,0800 \pm 0,0017$	0,0774	0,0774	0,0773	0,0772±0,0017	0,0770	0,0778	0,0769
1173,2	$0,0586 \pm 0,0016$	0,0587	0,0588	0,0586	0,0593±0,0014	0,0584	0,0590	0,0583
1274,5	0,0557±0,0014	0,0563	0,0565	0,0564	0,0577±0,0015	0,0560	0,0567	0,0560
1332,5	0,0552±0,0012	0,0550	0,0552	0,0550	0,0534±0,0012	0,0547	0,0554	0,0547
Enerji		C20				C30		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,5647±0,0124	0,5948	0,6765	0,5949	0,6130±0,0138	0,6478	0,7789	0,6483
81,0	$0,3223 \pm 0,0085$	0,3275	0,3530	0,3277	0,3427±0,0085	0,3487	0,3943	0,3490
276,4	0,1133±0,0056	0,1136	0,1135	0,1107	0,1113±0,0059	0,1138	0,1148	0,1139
302,9	$0,1099 \pm 0,0034$	0,1089	0,1089	0,1088	0,1123±0,0036	0,1090	0,1099	0,1089
356,0	$0,0993 \pm 0,0022$	0,1013	0,1017	0,1012	0,0987±0,0023	0,1012	0,1024	0,1012
383,9	$0,0952{\pm}0,0051$	0,0979	0,0985	0,0980	0,0967±0,0050	0,0978	0,0992	0,0977
511,0	$0,0832 \pm 0,0022$	0,0863	0,0875	0,0863	0,0903±0,0023	0,0861	0,0878	0,0859
661,7	$0,0795 \pm 0,0017$	0,0767	0,0781	0,0767	0,0786±0,0017	0,0765	0,0784	0,0764
1173,2	0,0553±0,0013	0,0581	0,0592	0,0581	$0,0604{\pm}0,0014$	0,0579	0,0594	0,0578
1274,5	$0,0567 \pm 0,0014$	0,0557	0,0568	0,0557	0,0521±0,0013	0,0555	0,0570	0,0554
1332,5	$0,0515\pm0,0012$	0,0545	0,0555	0,0544	0,0532±0,0012	0,0543	0,0557	0,0542
Enerji		C40				C50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,6753±0,0178	0,6933	0,8656	0,6938	0,7139±0,0196	0,7327	0,9416	0,7336
81,0	$0,3588 \pm 0,0090$	0,3668	0,4298	0,3671	0,3731±0,0093	0,3825	0,4605	0,3827
276,4	$0,1109\pm0,0051$	0,1140	0,1158	0,1139	0,1120±0,0051	0,1142	0,1169	0,1142
302,9	0,1119±0,0038	0,1091	0,1109	0,1090	0,1046±0,0032	0,1091	0,1116	0,1091
356,0	0,1017±0,0023	0,1011	0,1029	0,1011	0,1008±0,0023	0,1011	0,1036	0,1011
383,9	0,0979±0,0053	0,0977	0,0997	0,0976	$0,0977 \pm 0,0059$	0,0976	0,1001	0,0977
511,0	$0,0883 \pm 0,0023$	0,0859	0,0882	0,0858	0,0880±0,0023	0,0857	0,0884	0,0857
661,7	$0,0782 \pm 0,0017$	0,0763	0,0787	0,0762	0,0781±0,0017	0,0761	0,0788	0,0760
1173,2	0,0566±0,0013	0,0577	0,0595	0,0577	0,0567±0,0013	0,0576	0,0596	0,0576
1274,5	$0,0581 \pm 0,0015$	0,0553	0,0572	0,0552	0,0538±0,0013	0,0552	0,0573	0,0553
1332,5	0,0518±0,0012	0,0541	0,0558	0,0540	0,0565±0,0013	0,0539	0,0559	0,0540

Tablo 4. 4. %50 bronz ve farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş karşılaştırmalı kütle azaltma katsayısı (cm² g⁻¹) değerleri

Enerji		S	B		B50				
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	0,4545±0,0101	0,4568	0,4914	0,4570	1,0384±0,0365	1,1003	1,0181	1,1016	
81,0	0,2837±0,0064	0,2726	0,2450	0,2726	0,5161±0,0124	0,5380	0,4927	0,5385	
276,4	0,1143±0,0057	0,1131	0,1103	0,1131	$0,1120\pm0,0054$	0,1182	0,1135	0,1181	
302,9	0,1137±0,0034	0,1087	0,1064	0,1086	$0,1189{\pm}0,0037$	0,1121	0,1082	0,1121	
356,0	$0,0982{\pm}0,0023$	0,1015	0,0999	0,1016	0,1021±0,0023	0,1027	0,1000	0,1026	
383,9	0,0941±0,0050	0,0983	0,0969	0,0984	$0,0941 \pm 0,0047$	0,0988	0,0966	0,0988	
511,0	0,0936±0,0024	0,0869	0,0865	0,0867	$0,0845 \pm 0,0022$	0,0859	0,0851	0,0859	
661,7	$0,0800\pm0,0017$	0,0774	0,0774	0,0773	$0,0744{\pm}0,0016$	0,0759	0,0757	0,0759	
1173,2	$0,0586 \pm 0,0016$	0,0587	0,0588	0,0586	$0,0569{\pm}0,0013$	0,0572	0,0571	0,0571	
1274,5	$0,0557{\pm}0,0014$	0,0563	0,0565	0,0564	$0,0561\pm0,0014$	0,0548	0,0549	0,0547	
1332,5	$0,0552{\pm}0,0012$	0,0550	0,0552	0,0550	$0,0532{\pm}0,0012$	0,0536	0,0537	0,0535	
Enerji		B50B	5			B50B1	0		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	$1,0548 \pm 0,0505$	1,0700	0,9928	1,0711	1,0103±0,0349	1,0420	0,9658	1,0429	
81,0	$0,5139{\pm}0,0157$	0,5255	0,4814	0,5258	$0,\!4898{\pm}0,\!0128$	0,5138	0,4709	0,5141	
276,4	$0,1188 \pm 0,0059$	0,1177	0,1131	0,1177	$0,1183{\pm}0,0065$	0,1173	0,1129	0,1172	
302,9	$0,1180{\pm}0,0039$	0,1117	0,1080	0,1117	$0,1086{\pm}0,0035$	0,1113	0,1077	0,1113	
356,0	$0,1014{\pm}0,0023$	0,1025	0,0998	0,1024	$0,1071\pm0,0024$	0,1022	0,0996	0,1022	
383,9	$0,0983{\pm}0,0049$	0,0986	0,0965	0,0986	$0,0972{\pm}0,0051$	0,0984	0,0962	0,0982	
511,0	$0,0827{\pm}0,0022$	0,0858	0,0850	0,0858	$0,0837{\pm}0,0021$	0,0856	0,0849	0,0856	
661,7	$0,0737 \pm 0,0016$	0,0758	0,0757	0,0758	$0,0797{\pm}0,0018$	0,0757	0,0753	0,0757	
1173,2	$0,0564{\pm}0,0013$	0,0571	0,0572	0,0571	$0,0586{\pm}0,0014$	0,0571	0,0571	0,0570	
1274,5	$0,0536 \pm 0,0014$	0,0548	0,0549	0,0546	$0,0544{\pm}0,0014$	0,0547	0,0548	0,0546	
1332,5	$0,0514{\pm}0,0012$	0,0535	0,0536	0,0535	0,0516±0,0012	0,0535	0,0535	0,0534	
Enerji		B50B1	5			B50B2	0		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	$0,9905{\pm}0,0340$	1,0150	0,9412	0,8888	1,0365±0,0413	0,9899	0,9174	0,9910	
81,0	$0,4760 \pm 0,0126$	0,5027	0,4612	0,4515	$0,5058{\pm}0,0128$	0,4924	0,4516	0,4927	
276,4	$0,1136{\pm}0,0062$	0,1169	0,1126	0,1157	$0,1158{\pm}0,0062$	0,1165	0,1123	0,1164	
302,9	$0,1089{\pm}0,0034$	0,1110	0,1074	0,1102	$0,1049{\pm}0,0033$	0,1107	0,1072	0,1105	
356,0	$0,1065\pm0,0024$	0,1017	0,0994	0,1016	$0,1028{\pm}0,0023$	0,1013	0,0994	0,1016	
383,9	$0,0992{\pm}0,0056$	0,0982	0,0960	0,0978	$0,1001\pm0,0052$	0,0980	0,0960	0,0980	
511,0	0,0893±0,0024	0,0855	0,0848	0,0856	0,0880±0,0022	0,0854	0,0847	0,0853	
661,7	0,0749±0,0016	0,0756	0,0754	0,0758	0,0795±0,0017	0,0755	0,0754	0,0754	
1173,2	0,0574±0,0013	0,0570	0,0571	0,0572	0,0559±0,0013	0,0570	0,0570	0,0569	
1274,5	0,0523±0,0012	0,0547	0,0548	0,0548	$0,0564{\pm}0,0014$	0,0546	0,0547	0,0545	
1332,5	0,0557±0,0013	0,0534	0,0535	0,0536	$0,0505{\pm}0,0011$	0,0534	0,0535	0,0533	

Tablo 4. 5. %50 pirinç ve farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş karşılaştırmalı kütle azaltma katsayısı (cm² g⁻¹)

Enerji		5	SB			P50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,4545±0,0101	0,4568	0,4914	0,4570	0,8175±0,0213	0,8636	0,7907	0,8650
81,0	$0,2837 \pm 0,0064$	0,2726	0,2450	0,2726	0,4236±0,0109	0,4356	0,3947	0,4358
276,4	$0,1143{\pm}0,0057$	0,1131	0,1103	0,1131	0,1159±0,0054	0,1152	0,1108	0,1151
302,9	$0,1137\pm0,0034$	0,1087	0,1064	0,1086	$0,1067{\pm}0,0034$	0,1098	0,1063	0,1098
356,0	$0,0982{\pm}0,0023$	0,1015	0,0999	0,1016	$0,0969 \pm 0,0022$	0,1013	0,0988	0,1013
383,9	$0,0941 \pm 0,0050$	0,0983	0,0969	0,0984	0,0920±0,0060	0,0978	0,0958	0,0977
511,0	0,0936±0,0024	0,0869	0,0865	0,0867	$0,0812{\pm}0,0022$	0,0856	0,0847	0,0855
661,7	$0,0800 \pm 0,0017$	0,0774	0,0774	0,0773	0,0734±0,0016	0,0758	0,0756	0,0758
1173,2	$0,0586{\pm}0,0016$	0,0587	0,0588	0,0586	$0,0568{\pm}0,0013$	0,0573	0,0573	0,0572
1274,5	$0,0557{\pm}0,0014$	0,0563	0,0565	0,0564	$0,0550{\pm}0,0014$	0,0549	0,0550	0,0548
1332,5	$0,0552{\pm}0,0012$	0,0550	0,0552	0,0550	$0,0540{\pm}0,0013$	0,0537	0,0537	0,0537
Enerji		P50B5	5			P50B1	0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,8248±0,0245	0,8410	0,7694	0,7153	0,8534±0,0269	0,8197	0,7506	0,8115
81,0	0,4403±0,0119	0,4260	0,3863	0,3749	0,4112±0,0104	0,4178	0,3787	0,4132
276,4	0,1096±0,0059	0,1150	0,1107	0,1123	0,1087±0,0059	0,1144	0,1103	0,1132
302,9	0,1020±0,0035	0,1090	0,1060	0,1073	0,1110±0,0037	0,1092	0,1059	0,1078
356,0	$0,0949{\pm}0,0021$	0,1010	0,0988	0,0994	0,1057±0,0024	0,1009	0,0985	0,0996
383,9	$0,0897{\pm}0,0052$	0,0975	0,0956	0,0960	0,0965±0,0052	0,0974	0,0954	0,0961
511,0	$0,0793 \pm 0,0021$	0,0854	0,0847	0,0844	$0,0896{\pm}0,0024$	0,0853	0,0847	0,0841
661,7	$0,0719\pm0,0016$	0,0757	0,0756	0,0749	$0,0796 \pm 0,0017$	0,0756	0,0755	0,0747
1173,2	$0,0504{\pm}0,0012$	0,0572	0,0573	0,0566	$0,0589{\pm}0,0014$	0,0572	0,0573	0,0565
1274,5	0,0528±0,0013	0,0549	0,0551	0,0543	$0,0555{\pm}0,0013$	0,0548	0,0549	0,0541
1332,5	0,0518±0,0012	0,0536	0,0537	0,0531	0,0548±0,0012	0,0536	0,0537	0,0539
Enerji		P50B1	5			P50B2	0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$0,7769 \pm 0,0198$	0,7998	0,7319	0,8011	0,7389±0,0177	0,7636	0,7159	0,7822
81,0	$0,4179\pm0,0101$	0,4097	0,3718	0,4099	0,4055±0,0122	0,3950	0,3654	0,4022
276,4	$0,1093{\pm}0,0050$	0,1141	0,1101	0,1140	0,1134±0,0062	0,1137	0,1099	0,1138
302,9	$0,1053{\pm}0,0034$	0,1089	0,1056	0,1088	0,1107±0,0036	0,1087	0,1055	0,1085
356,0	$0,1040\pm0,0023$	0,1007	0,0983	0,1006	0,1045±0,0023	0,1005	0,0983	0,1005
383,9	$0,0953{\pm}0,0050$	0,0972	0,0953	0,0972	$0,0992{\pm}0,0057$	0,0971	0,0952	0,0969
511,0	$0,0828 \pm 0,0022$	0,0852	0,0844	0,0851	$0,0826{\pm}0,0023$	0,0852	0,0844	0,0850
661,7	0,0725±0,0018	0,0756	0,0755	0,0755	$0,0774 \pm 0,0017$	0,0756	0,0753	0,0754
1173,2	$0,0591{\pm}0,0014$	0,0571	0,0572	0,0571	0,0561±0,0013	0,0572	0,0572	0,0569
1274,5	$0,0558{\pm}0,0014$	0,0548	0,0549	0,0547	$0,0577{\pm}0,0015$	0,0548	0,0549	0,0547
1332,5	$0,0536\pm0,0012$	0,0535	0,0536	0,0535	0,0541±0,0012	0,0539	0,0540	0,0541

Tablo 4. 6. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile hesaplanmış karşılaştırmalı kütle azaltma katsayısı (cm² g⁻¹) değerleri

Enerji	_	S	В		C50 Deneysel Teorik GEANT4 FLU: 0,7139±0,0196 0,7327 0,9416 0,73 0,3731±0,0093 0,3825 0,4605 0,38 0,1120±0,0051 0,1142 0,1169 0,11 0,1046±0,0032 0,1091 0,1116 0,100 0,0977±0,0059 0,0976 0,1001 0,099 0,0880±0,0023 0,0857 0,0884 0,08 0,0781±0,0017 0,0761 0,0788 0,07 0,0567±0,0013 0,0576 0,0596 0,05			
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,4545±0,0101	0,4568	0,4914	0,4570	0,7139±0,0196	0,7327	0,9416	0,7336
81,0	0,2837±0,0064	0,2726	0,2450	0,2726	0,3731±0,0093	0,3825	0,4605	0,3827
276,4	$0,1143{\pm}0,0057$	0,1131	0,1103	0,1131	0,1120±0,0051	0,1142	0,1169	0,1142
302,9	0,1137±0,0034	0,1087	0,1064	0,1086	0,1046±0,0032	0,1091	0,1116	0,1091
356,0	$0,0982{\pm}0,0023$	0,1015	0,0999	0,1016	0,1008±0,0023	0,1011	0,1036	0,1011
383,9	$0,0941 \pm 0,0050$	0,0983	0,0969	0,0984	0,0977±0,0059	0,0976	0,1001	0,0977
511,0	$0,0936{\pm}0,0024$	0,0869	0,0865	0,0867	0,0880±0,0023	0,0857	0,0884	0,0857
661,7	$0,0800{\pm}0,0017$	0,0774	0,0774	0,0773	$0,0781 \pm 0,0017$	0,0761	0,0788	0,0760
1173,2	$0,0586{\pm}0,0016$	0,0587	0,0588	0,0586	0,0567±0,0013	0,0576	0,0596	0,0576
1274,5	$0,0557{\pm}0,0014$	0,0563	0,0565	0,0564	0,0538±0,0013	0,0552	0,0573	0,0553
1332,5	$0,0552{\pm}0,0012$	0,0550	0,0552	0,0550	0,0565±0,0013	0,0539	0,0559	0,0540
Enerji		C50B5	:			C50B1	.0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,6960±0,0181	0,7141	0,9178	0,7148	0,6618±0,0153	0,6975	0,8936	0,6974
81,0	0,3643±0,0091	0,3749	0,4504	0,3752	0,3570±0,0089	0,3681	0,4407	0,3684
276,4	0,1154±0,0056	0,1138	0,1162	0,1137	0,1174±0,0054	0,1135	0,1158	0,1135
302,9	$0,1104{\pm}0,0038$	0,1088	0,1112	0,1088	0,1135±0,0035	0,1086	0,1109	0,1085
356,0	$0,0994{\pm}0,0022$	0,1008	0,1033	0,1008	0,1056±0,0024	0,1006	0,1030	0,1006
383,9	$0,0949{\pm}0,0052$	0,0974	0,0999	0,0974	0,0983±0,0051	0,0972	0,0996	0,0972
511,0	$0,0830{\pm}0,0022$	0,0856	0,0883	0,0855	0,0807±0,0021	0,0854	0,0880	0,0854
661,7	0,0722±0,0016	0,0760	0,0786	0,0760	0,0742±0,0016	0,0759	0,0785	0,0758
1173,2	$0,0596{\pm}0,0014$	0,0575	0,0595	0,0574	0,0555±0,0013	0,0574	0,0594	0,0573
1274,5	$0,0540{\pm}0,0013$	0,0551	0,0572	0,0550	$0,0536\pm0,0013$	0,0551	0,0570	0,0550
1332,5	$0,0527{\pm}0,0012$	0,0539	0,0558	0,0538	0,0561±0,0012	0,0538	0,0557	0,0538
Enerji		C50B1	5			C50B2	20	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,6581±0,0152	0,6802	0,8708	0,6816	0,6313±0,0144	0,6637	0,8494	0,6664
81,0	$0,3538{\pm}0,0088$	0,3611	0,4318	0,3617	0,3424±0,0096	0,3544	0,4232	0,3555
276,4	$0,1178\pm0,0064$	0,1132	0,1155	0,1131	0,1107±0,0054	0,1129	0,1151	0,1129
302,9	$0,1073\pm0,0033$	0,1083	0,1104	0,1082	0,1128±0,0038	0,1080	0,1101	0,1079
356,0	$0,1037{\pm}0,0024$	0,1004	0,1027	0,1004	0,1046±0,0024	0,1002	0,1024	0,1002
383,9	0,0981±0,0053	0,0971	0,0993	0,0970	0,0963±0,0049	0,0969	0,0990	0,0969
511,0	$0,0842{\pm}0,0022$	0,0853	0,0879	0,0852	0,0886±0,0023	0,0852	0,0875	0,0852
661,7	0,0723±0,0016	0,0758	0,0784	0,0757	0,0751±0,0017	0,0757	0,0781	0,0756
1173,2	0,0552±0,0013	0,0574	0,0593	0,0574	0,0573±0,0013	0,0573	0,0592	0,0572
1274,5	$0,0542{\pm}0,0014$	0,0550	0,0569	0,0550	0,0523±0,0014	0,0549	0,0568	0,0549
1332,5	$0,0516{\pm}0,0012$	0,0538	0,0556	0,0537	0,0555±0,0012	0,0537	0,0555	0,0536

Şekil 4.1. Bronz katkılanmış beton numunelerin elde edilen sonuçlara göre çizilmiş kütle azaltma katsayılarının enerjiye göre değişim grafiği

0,2 0,0 + 0 0,0 0 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400 Enerji (keV) Enerji (keV) 1,0 1,0 - Deneysel - Deneysel WinXCOM WinXCOM 0,8 · 0,8 -- GEANT4 GEANT4 FLUKA - FLUKA μ/ρ (cm² g⁻¹) μ/p (cm² g⁻¹) P40 P50 0,2 0,2 0,0 | 0 0,0 -400 ò 200 400 800 200 . 600 . 800 1000 1200 1400 600 . 1000 1200 1400 Enerji (keV) Enerji (keV)

1,0

0,8 ·

μ/ρ (cm² g⁻¹)

0,2

0,0 ·

1,0

0,8

μ/ρ (cm² g⁻¹)

0

200

400

Şekil 4.2. Pirinç katkılanmış beton numunelerin elde edilen sonuçlara göre çizilmiş kütle azaltma katsayılarının enerjiye göre değişim grafiği

Şekil 4.3. Paslanmaz çelik katkılanmış beton numunelerin elde edilen sonuçlara göre çizilmiş kütle azaltma katsayılarının enerjiye göre değişim grafiği

Şekil 4.4. %50 bronz ve farklı oranlarda B₄C katkılanmış beton numunelerin elde edilen sonuçlara göre çizilmiş kütle azaltma katsayılarının enerjiye göre değişim grafiği.

Şekil 4.5. %50 pirinç ve farklı oranlarda B₄C katkılanmış beton numunelerin elde edilen sonuçlara göre çizilmiş kütle azaltma katsayılarının enerjiye göre değişim grafiği.

Şekil 4.6. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılanmış beton numunelerin elde edilen sonuçlara göre çizilmiş kütle azaltma katsayılarının enerjiye göre değişim grafiği

4.2. Gama Radyasyon Zırhlamada Lineer Azaltma Katsayılarına Ait Bulgular

Gama radyasyonu zırhlamada hedef materyalin yoğunluğunun önemli olduğu gösteren parametrelerden biri lineer azaltma katsayısıdır. Kullanılan beton miktarının %10-20-30-40-50'si oranında bronz, pirinç, paslanmaz çelik veya beton miktarının %5-10-15-20'si oranında B₄C ile katkılanarak hazırlanan beton numunelerin lineer azaltma katsayıları (μ , cm⁻¹), deneysel olarak kütle azaltma katsayısının malzemenin sahip olduğu yoğunlukla çarpılması ile elde edilmiştir. Deneysel olarak elde edilen sonuçlar, teorik ve simülasyonlar ile elde edilen sonuçlar ile karşılaştırılmıştır.

Farklı oranlarda bronz, pirinç, paslanmaz çelik veya B₄C ile katkılanmış beton numunelerin elde edilen ve hesaplanan lineer azaltma katsayısı değerleri Tablo 4.7-4.12'de, elde edilen sonuçlara göre çizilen grafikler Şekil 4.7-4.12'de verilmiştir.

Enorii			SB		B10			
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,8790±0,0196	0,8834	0,9504	0,8839	$1,3537 \pm 0,0030$	1,3962	1,2719	1,3971
81,0	0,5487±0,0124	0,5272	0,4738	0,5273	0,7553±0,0178	0,7618	0,6901	0,7623
276,4	0,2210±0,0111	0,2187	0,2133	0,2187	0,2479±0,0118	0,2528	0,2453	0,2527
302,9	0,2198±0,0065	0,2102	0,2057	0,2101	0,2531±0,0079	0,2421	0,2359	0,2420
356,0	$0,1901\pm0,0044$	0,1963	0,1932	0,1964	0,2201±0,0049	0,2248	0,2207	0,2246
383,9	0,1820±0,0096	0,1900	0,1874	0,1903	0,2104±0,0122	0,2173	0,2140	0,2172
511,0	$0,1810\pm0,0047$	0,1680	0,1673	0,1677	$0,1845 \pm 0,0048$	0,1912	0,1902	0,1910
661,7	$0,1547\pm0,0034$	0,1496	0,1498	0,1495	$0,1760\pm0,0039$	0,1699	0,1701	0,1697
1173,2	$0,1134\pm0,0028$	0,1135	0,1137	0,1134	$0,1220\pm0,0028$	0,1287	0,1288	0,1286
1274,5	0,1059±0,0026	0,1089	0,1093	0,1090	$0,1252{\pm}0,0032$	0,1234	0,1237	0,1234
1332,5	$0,1009\pm0,0023$	0,1064	0,1067	0,1064	$0,1236{\pm}0,0028$	0,1206	0,1209	0,1204
F		B20)			B30)	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
(keV)	Deneysel 1,6786±0,0391	Teorik 1,7731	GEANT4 1,627	FLUKA 1,7747	Deneysel 2,1048±0,0578	Teorik 2,1667	GEANT4 1,9985	FLUKA 2,1693
(keV) 59,5 81,0	Deneysel 1,6786±0,0391 0,8954±0,0200	Teorik 1,7731 0,9230	GEANT4 1,627 0,8398	FLUKA 1,7747 0,9240	Deneysel 2,1048±0,0578 1,0927±0,0282	Teorik 2,1667 1,0958	GEANT4 1,9985 1,0009	FLUKA 2,1693 1,0962
(keV) 59,5 81,0 276,4	Deneysel 1,6786±0,0391 0,8954±0,0200 0,2780±0,0153	Teorik 1,7731 0,9230 0,2634	GEANT4 1,627 0,8398 0,2549	FLUKA 1,7747 0,9240 0,2631	Deneysel 2,1048±0,0578 1,0927±0,0282 0,2734±0,0153	Teorik 2,1667 1,0958 0,2801	GEANT4 1,9985 1,0009 0,2700	FLUKA 2,1693 1,0962 0,2796
59,5 81,0 276,4 302,9	Deneysel 1,6786±0,0391 0,8954±0,0200 0,2780±0,0153 0,2613±0,0085	Teorik 1,7731 0,9230 0,2634 0,2515	GEANT4 1,627 0,8398 0,2549 0,2443	FLUKA 1,7747 0,9240 0,2631 0,2515	Deneysel 2,1048±0,0578 1,0927±0,0282 0,2734±0,0153 0,2543±0,0083	Teorik 2,1667 1,0958 0,2801 0,2667	GEANT4 1,9985 1,0009 0,2700 0,2586	FLUKA 2,1693 1,0962 0,2796 0,2662
(keV) 59,5 81,0 276,4 302,9 356,0	Deneysel 1,6786±0,0391 0,8954±0,0200 0,2780±0,0153 0,2613±0,0085 0,2466±0,0056	Teorik 1,7731 0,9230 0,2634 0,2515 0,2325	GEANT4 1,627 0,8398 0,2549 0,2443 0,2275	FLUKA 1,7747 0,9240 0,2631 0,2515 0,2324	Deneysel 2,1048±0,0578 1,0927±0,0282 0,2734±0,0153 0,2543±0,0083 0,2274±0,0054	Teorik 2,1667 1,0958 0,2801 0,2667 0,2458	GEANT4 1,9985 1,0009 0,2700 0,2586 0,2400	FLUKA 2,1693 1,0962 0,2796 0,2662 0,2455
(keV) 59,5 81,0 276,4 302,9 356,0 383,9	Deneysel 1,6786±0,0391 0,8954±0,0200 0,2780±0,0153 0,2613±0,0085 0,2466±0,0056 0,2223±0,0130	Teorik 1,7731 0,9230 0,2634 0,2515 0,2325 0,2244	GEANT4 1,627 0,8398 0,2549 0,2443 0,2275 0,2204	FLUKA 1,7747 0,9240 0,2631 0,2515 0,2324 0,2244	Deneysel 2,1048±0,0578 1,0927±0,0282 0,2734±0,0153 0,2543±0,0083 0,2274±0,0054 0,2493±0,0132	Teorik 2,1667 1,0958 0,2801 0,2667 0,2458 0,2369	GEANT4 1,9985 1,0009 0,2700 0,2586 0,2400 0,2323	FLUKA 2,1693 1,0962 0,2796 0,2662 0,2455 0,2365
(keV) 59,5 81,0 276,4 302,9 356,0 383,9 511,0	Deneysel 1,6786±0,0391 0,8954±0,0200 0,2780±0,0153 0,2613±0,0085 0,2466±0,0056 0,2223±0,0130 0,1869±0,0047	Teorik 1,7731 0,9230 0,2634 0,2515 0,2325 0,2244 0,1967	GEANT4 1,627 0,8398 0,2549 0,2443 0,2275 0,2204 0,1952	FLUKA 1,7747 0,9240 0,2631 0,2515 0,2324 0,2244 0,1967	Deneysel 2,1048±0,0578 1,0927±0,0282 0,2734±0,0153 0,2543±0,0083 0,2274±0,0054 0,2493±0,0132 0,1959±0,0005	Teorik 2,1667 1,0958 0,2801 0,2667 0,2458 0,2369 0,2070	GEANT4 1,9985 1,0009 0,2700 0,2586 0,2400 0,2323 0,2054	FLUKA 2,1693 1,0962 0,2796 0,2662 0,2455 0,2365 0,2069
Energi (keV) 59,5 81,0 276,4 302,9 356,0 383,9 511,0 661,7	Deneysel 1,6786±0,0391 0,8954±0,0200 0,2780±0,0153 0,2613±0,0085 0,2466±0,0056 0,2223±0,0130 0,1869±0,0047 0,1795±0,0039	Teorik 1,7731 0,9230 0,2634 0,2515 0,2325 0,2244 0,1967 0,1745	GEANT4 1,627 0,8398 0,2549 0,2443 0,2275 0,2204 0,1952 0,1805	FLUKA 1,7747 0,9240 0,2631 0,2515 0,2324 0,2244 0,1967 0,1746	$\begin{array}{c} \textbf{Deneysel} \\ \hline 2,1048 \pm 0,0578 \\ 1,0927 \pm 0,0282 \\ 0,2734 \pm 0,0153 \\ 0,2543 \pm 0,0083 \\ 0,2274 \pm 0,0054 \\ 0,2493 \pm 0,0132 \\ 0,1959 \pm 0,0005 \\ 0,1788 \pm 0,0039 \end{array}$	Teorik 2,1667 1,0958 0,2801 0,2667 0,2458 0,2369 0,2070 0,1834	GEANT4 1,9985 1,0009 0,2700 0,2586 0,2400 0,2323 0,2054 0,1832	FLUKA 2,1693 1,0962 0,2796 0,2662 0,2455 0,2365 0,2069 0,1832
Energi (keV) 59,5 81,0 276,4 302,9 356,0 383,9 511,0 661,7 1173,2	Deneysel 1,6786±0,0391 0,8954±0,0200 0,2780±0,0153 0,2613±0,0085 0,2466±0,0056 0,2223±0,0130 0,1869±0,0047 0,1795±0,0039 0,1435±0,0033	Teorik 1,7731 0,9230 0,2634 0,2515 0,2325 0,2244 0,1967 0,1745 0,1320	GEANT4 1,627 0,8398 0,2549 0,2443 0,2275 0,2204 0,1952 0,1805 0,1323	FLUKA 1,7747 0,9240 0,2631 0,2515 0,2324 0,2244 0,1967 0,1746 0,1318	$\begin{array}{c} \textbf{Deneysel} \\ \hline 2,1048\pm0,0578 \\ 1,0927\pm0,0282 \\ 0,2734\pm0,0153 \\ 0,2543\pm0,0083 \\ 0,2274\pm0,0054 \\ 0,2493\pm0,0132 \\ 0,1959\pm0,0005 \\ 0,1788\pm0,0039 \\ 0,1416\pm0,0033 \end{array}$	Teorik 2,1667 1,0958 0,2801 0,2667 0,2458 0,2369 0,2070 0,1834 0,1384	GEANT4 1,9985 1,0009 0,2700 0,2586 0,2400 0,2323 0,2054 0,1832 0,1386	FLUKA 2,1693 1,0962 0,2796 0,2662 0,2455 0,2365 0,2069 0,1832 0,1384
Energi (keV) 59,5 81,0 276,4 302,9 356,0 383,9 511,0 661,7 1173,2 1274,5	Deneysel 1,6786±0,0391 0,8954±0,0200 0,2780±0,0153 0,2613±0,0085 0,2466±0,0056 0,2223±0,0130 0,1869±0,0047 0,1795±0,0039 0,1435±0,0033 0,1188±0,0030	Teorik 1,7731 0,9230 0,2634 0,2515 0,2325 0,2244 0,1967 0,1745 0,1320 0,1265	GEANT4 1,627 0,8398 0,2549 0,2443 0,2275 0,2204 0,1952 0,1805 0,1323 0,1268	FLUKA 1,7747 0,9240 0,2631 0,2515 0,2324 0,2244 0,1967 0,1746 0,1318 0,1264	$\begin{array}{c} \textbf{Deneysel} \\ \hline 2,1048\pm0,0578 \\ 1,0927\pm0,0282 \\ 0,2734\pm0,0153 \\ 0,2543\pm0,0083 \\ 0,2274\pm0,0054 \\ 0,2493\pm0,0132 \\ 0,1959\pm0,0005 \\ 0,1788\pm0,0039 \\ 0,1416\pm0,0033 \\ 0,1275\pm0,0032 \end{array}$	Teorik 2,1667 1,0958 0,2801 0,2667 0,2458 0,2369 0,2070 0,1834 0,1384 0,1327	GEANT4 1,9985 1,0009 0,2700 0,2586 0,2400 0,2323 0,2054 0,1832 0,1386 0,1332	FLUKA 2,1693 1,0962 0,2796 0,2662 0,2455 0,2365 0,2069 0,1832 0,1384 0,1325

Tablo 4. 7. Bronz ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş lineer azaltma katsayısı (cm⁻¹) değerleri

Enerji		B40)			B50	I	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	2,3423±0,0869	2,4602	2,2712	2,4602	2,6778±0,0942	2,8373	2,6254	2,8406
81,0	$1,2518\pm0,0302$	1,2201	1,1132	1,2207	$1,3308\pm0,0320$	1,3874	1,2704	1,3888
276,4	0,2868±0,0148	0,2866	0,2753	0,2865	$0,2889{\pm}0,0140$	0,3048	0,2928	0,3046
302,9	$0,2628 \pm 0,0081$	0,2723	0,2626	0,2720	$0,3065 \pm 0,0096$	0,2891	0,2791	0,2890
356,0	0,2598±0,0059	0,2502	0,2436	0,2500	$0,2634{\pm}0,0060$	0,2649	0,2579	0,2646
383,9	0,2369±0,0131	0,2409	0,2358	0,2411	$0,2427{\pm}0,0122$	0,2549	0,2492	0,2548
511,0	$0,2091{\pm}0.0055$	0,2100	0,2077	0,2101	$0,2180\pm0,0057$	0,2216	0,2195	0,2216
661,7	0,1867±0,0041	0,1857	0,1851	0,1857	$0,1918{\pm}0,0042$	0,1958	0,1953	0,1958
1173,2	$0,1458{\pm}0,0034$	0,1400	0,1400	0,1398	$0,1467{\pm}0,0034$	0,1474	0,1474	0,1473
1274,5	0,1374±0,0035	0,1342	0,1344	0,1342	$0,1445\pm 0,0037$	0,1413	0,1417	0,1412
1332,5	0,1357±0,0031	0,1312	0,1312	0,1310	$0,1371\pm0,0031$	0,1381	0,1383	0,1381

Tablo 4.7 Devam Bronz ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş lineer azaltma katsayısı (cm⁻¹) değerleri

Tablo 4. 8. Pirinç ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş karşılaştırmalı lineer azaltma katsayısı (cm⁻¹) değerleri

Enerji		;	SB			P10)	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,8790±0,0196	0,8834	0,9504	0,8839	1,2631±0,0285	1,2586	1,1384	1,2594
81,0	0,5487±0,0124	0,5272	0,4738	0,5273	0,6847±0,0127	0,7029	0,6334	0,7033
276,4	0,2210±0,0111	0,2187	0,2133	0,2187	$0,2397{\pm}0,116$	0,2520	0,2447	0,2517
302,9	$0,2198{\pm}0,0065$	0,2102	0,2057	0,2101	$0,2388{\pm}0,0078$	0,2417	0,2360	0,2418
356,0	$0,1901{\pm}0,0044$	0,1963	0,1932	0,1964	$0,2357{\pm}0,0053$	0,2249	0,2210	0,2246
383,9	$0,1820\pm0,0096$	0,1900	0,1874	0,1903	$0,2143{\pm}0,0048$	0,2175	0,2143	0,2175
511,0	$0,1810\pm0,0047$	0,1680	0,1673	0,1677	$0,1945{\pm}0,0039$	0,1917	0,1907	0,1916
661,7	$0,1547{\pm}0,0034$	0,1496	0,1498	0,1495	$0,1744{\pm}0,0027$	0,1706	0,1706	0,1705
1173,2	$0,1134{\pm}0,0028$	0,1135	0,1137	0,1134	$0,1335{\pm}0,0019$	0,1293	0,1294	0,1290
1274,5	$0,1059{\pm}0,0026$	0,1089	0,1093	0,1090	$0,1284{\pm}0,0023$	0,1239	0,1241	0,1238
1332,5	$0,1009\pm0,0023$	0,1064	0,1067	0,1064	$0,1248{\pm}0,0020$	0,1212	0,1218	0,1211
Enerji		P20				P30)	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59.5	1,4611±0,0354	1,5315	1,3920	1,5325	$1,6941{\pm}0,0394$	1,7436	1,5903	1,7458
81.0	0,7918±0,0193	0,8214	0,7417	0,8223	$0,8785{\pm}0,0205$	0,9102	0,8227	0,9106
276.4	0,2668±0,0124	0,2648	0,2560	0,2648	$0,2660{\pm}0,0099$	0,2704	0,2613	0,2702
302.9	0,2523±0,0096	0,2535	0,2466	0,2534	$0,2673{\pm}0,0084$	0,2585	0,2511	0,2584
356.0	$0,2474{\pm}0,0085$	0,2352	0,2305	0,2352	$0,2492{\pm}0,0073$	0,2394	0,2343	0,2393
383.9	$0,2234{\pm}0,0062$	0,2273	0,2234	0,2274	$0,2274{\pm}0,0052$	0,2312	0,2270	0,2315
511.0	$0,2004{\pm}0,0045$	0,2000	0,1987	0,1999	$0,1957{\pm}0,0059$	0,2030	0,2016	0,2026
661.7	$0,1724{\pm}0,0025$	0,1777	0,1775	0,1777	$0,1801{\pm}0,0042$	0,1802	0,1797	0,1800
1173.2	$0,1365\pm0,0019$	0,1346	0,1346	0,1343	$0,1441\pm0,0029$	0,1363	0,1362	0,1362
1274.5	$0,1363{\pm}0,0019$	0,1290	0,1293	0,1289	$0,1336{\pm}0,0013$	0,1307	0,1309	0,1306
1332.5	0,1313±0,0016	0,1261	0,1263	0,1260	$0,1250\pm0,0028$	0,1277	0,1279	0,1274

Tablo 4.8. Devam Pirinç ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş karşılaştırmalı lineer azaltma katsayısı (cm⁻¹) değerleri

Enerji		P40)			P50)	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$1,8472\pm0,0502$	1,9386	1,7665	1,9386	$2,0269\pm0,0528$	2,1410	1,9602	2,1445
81,0	$0,9579 \pm 0,0278$	0,9924	0,8955	0,9922	$1,0503{\pm}0,0270$	1,0800	0,9785	1,0803
276,4	0,2661±0,0156	0,2765	0,2662	0,2763	$0,2873{\pm}0,0138$	0,2855	0,2746	0,2854
302,9	$0,2639 \pm 0,0093$	0,2639	0,2555	0,2638	$0,2645 \pm 0,0105$	0,0227	0,2634	0,2722
356,0	$0,2420\pm0,0065$	0,2440	0,2378	0,2441	$0,2403{\pm}0,0088$	0,2513	0,2450	0,2512
383,9	$0,2297{\pm}0,0042$	0,2354	0,2303	0,2355	$0,2282{\pm}0,0071$	0,2423	0,2376	0,2422
511,0	$0,1962{\pm}0,0034$	0,2063	0,2045	0,2062	$0,2012{\pm}0,0054$	0,2121	0,2100	0,2119
661,7	$0,1917{\pm}0,0037$	0,1830	0,1825	0,1830	$0,1820{\pm}0,0042$	0,1880	0,1875	0,1880
1173,2	$0,1433{\pm}0,0026$	0,1384	0,1382	0,1383	$0,1408{\pm}0,0027$	0,1420	0,1420	0,1419
1274,5	$0,1362\pm0,0024$	0,1326	0,1326	0,1326	$0,1363{\pm}0,0015$	0,1361	0,1363	0,1358
1332,5	$0,1342{\pm}0,0027$	0,1297	0,1295	0,1296	$0,1414{\pm}0,0013$	0,1331	0,1331	0,1331

Tablo 4. 9. Paslanmaz çelik ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş karşılaştırmalı lineer azaltma katsayısı (cm⁻¹) değerleri

Enerji		S	В			C10		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,8790±0,0196	0,8834	0,9504	0,8839	0,9645±0,0218	1,0212	1,0663	1,0216
81,0	$0,5487{\pm}0,0124$	0,5272	0,4738	0,5273	0,5638±0,0166	0,5807	0,5830	0,5809
276,4	0,2210±0,0111	0,2187	0,2133	0,2187	0,2111±0,0105	0,2176	0,2150	0,2175
302,9	$0,2198 \pm 0,0065$	0,2102	0,2057	0,2101	$0,2177\pm0,0091$	0,2089	0,2070	0,2088
356,0	$0,1901\pm0,0044$	0,1963	0,1932	0,1964	$0,1890{\pm}0,0084$	0,1946	0,1937	0,1944
383,9	$0,1820\pm0,0096$	0,1900	0,1874	0,1903	$0,1843{\pm}0,0072$	0,1883	0,1879	0,1885
511,0	$0,1810\pm0,0047$	0,1680	0,1673	0,1677	$0,1588{\pm}0,0059$	0,1661	0,1668	0,1659
661,7	$0,1547{\pm}0,0034$	0,1496	0,1498	0,1495	$0,1482{\pm}0,0041$	0,1478	0,1493	0,1476
1173,2	$0,1134{\pm}0,0028$	0,1135	0,1137	0,1134	$0,1137{\pm}0,0035$	0,1121	0,1132	0,1120
1274,5	$0,1059{\pm}0,0026$	0,1089	0,1093	0,1090	$0,1107{\pm}0,0030$	0,1074	0,1088	0,1074
1332,5	$0,1009\pm0,0023$	0,1064	0,1067	0,1064	$0,1025\pm0,0023$	0,1050	0,1063	0,1050
Enerji		C20				C30		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$1,1371\pm0,0251$	1,1977	1,3623	1,1979	$1,2522 \pm 0,0283$	1,3233	1,5910	1,3243
81,0	0,6491±0,0170	0,6596	0,7109	0,6598	$0,7000 \pm 0,0174$	0,7122	0,8054	0,7128
276,4	$0,2282{\pm}0,0087$	0,2288	0,2286	0,223	$0,2274{\pm}0,0112$	0,2325	0,2345	0,2326
302,9	0,2213±0,0071	0,2193	0,2194	0,2192	$0,2293{\pm}0,0095$	0,2226	0,2245	0,2225
356,0	$0,1999 \pm 0,0061$	0,2040	0,2049	0,2038	$0,2015\pm0,0082$	0,2067	0,2091	0,2067
383,9	$0,1916\pm0,0049$	0,1972	0,1984	0,1973	$0,1974{\pm}0,0068$	0,1998	0,2027	0,1997
511,0	$0,1675\pm0,0047$	0,1737	0,1761	0,1739	$0,1845{\pm}0,0054$	0,1758	0,1794	0,1755
661,7	$0,1602{\pm}0,0036$	0,1545	0,1573	0,1544	$0,1606{\pm}0,0071$	0,1562	0,1601	0,1560
1173,2	$0,1113\pm0,0031$	0,1171	0,1192	0,1171	$0,1233{\pm}0,0037$	0,1183	0,1213	0,1181
1274,5	$0,1142{\pm}0,0029$	0,1122	0,1144	0,1121	$0,1064{\pm}0,0026$	0,1134	0,1165	0,1133
1332,5	$0,1037\pm0,0023$	0,1097	0,1118	0,1096	$0,1086{\pm}0,0024$	0,1109	0,1138	0,1108

Enerji		C40				C50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	1,4253±0,0376	1,4633	1,8269	1,4643	1,5880±0,0435	1,6299	2,0946	1,6319
81,0	0,7572±0,0189	0,7741	0,9072	0,7748	0,8300±0,0246	0,8508	1,0242	0,8514
276,4	0,2340±0,0203	0,2406	0,2443	0,2405	0,2491±0,0135	0,2539	0,2599	0,2540
302,9	$0,2362 \pm 0,0088$	0,2302	0,2340	0,2300	0,2327±0,0122	0,2427	0,2483	0,2426
356,0	0,2146±0,0073	0,2135	0,2173	0,2134	$0,2242\pm0,0094$	0,2248	0,2304	0,2249
383,9	$0,2066 \pm 0,0077$	0,2062	0,2105	0,2061	$0,2174\pm0,0132$	0,2171	0,2228	0,2173
511,0	0,1864±0,0054	0,1812	0,1862	0,1812	0,1957±0,0083	0,1906	0,1966	0,1906
661,7	$0,1651\pm0,0048$	0,1610	0,1661	0,1609	$0,1737\pm0,0017$	0,1693	0,1753	0,1691
1173,2	0,1194±0,0036	0,1219	0,1257	0,1218	0,1261±0,0013	0,1281	0,1327	0,1281
1274,5	$0,1225\pm0,0032$	0,1168	0,1206	0,1165	$0,1197{\pm}0,0014$	0,1227	0,1274	0,1229
1332,5	$0,1093{\pm}0,0022$	0,1142	0,1178	0,114	0,1258±0,0018	0,1200	0,1243	0,1201

Tablo 4.9. Devam Paslanmaz çelik ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş karşılaştırmalı lineer azaltma katsayısı (cm⁻¹) değerleri

Tablo 4. 10. %50 bronz ve farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş lineer azaltma katsayısı (cm⁻¹) değerleri

Enerji		9	SB			B50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,8790±0,0196	0,8834	0,9504	0,8839	$2,6778\pm0,0942$	2,8373	2,6254	2,8406
81,0	0,5487±0,0124	0,5272	0,4738	0,5273	$1,3308\pm0,0320$	1,3874	1,2704	1,3888
276,4	0,2210±0,0111	0,2187	0,2133	0,2187	$0,2889 \pm 0,0140$	0,3048	0,2928	0,3046
302,9	0,2198±0,0065	0,2102	0,2057	0,2101	$0,3065 \pm 0,0096$	0,2891	0,2791	0,2890
356,0	$0,1901\pm0,0044$	0,1963	0,1932	0,1964	$0,2634{\pm}0,0060$	0,2649	0,2579	0,2646
383,9	0,1820±0,0096	0,1900	0,1874	0,1903	$0,2427{\pm}0,0122$	0,2549	0,2492	0,2548
511,0	$0,1810\pm0,0047$	0,1680	0,1673	0,1677	$0,2180{\pm}0,0057$	0,2216	0,2195	0,2216
661,7	$0,1547{\pm}0,0034$	0,1496	0,1498	0,1495	$0,1918{\pm}0,0042$	0,1958	0,1953	0,1958
1173,2	0,1134±0,0028	0,1135	0,1137	0,1134	$0,1467{\pm}0,0034$	0,1474	0,1474	0,1473
1274,5	0,1059±0,0026	0,1089	0,1093	0,1090	$0,1445{\pm}0,0037$	0,1413	0,1417	0,1412
1332,5	0,1009±0,0023	0,1064	0,1067	0,1064	$0,1371\pm0,0031$	0,1381	0,1383	0,1381
Enerji		B50B	85			B50B1	0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$2,4566 \pm 0,1175$	2,4919	2,3121	2,4944	$2,2564{\pm}0,0780$	2,3272	2,1571	2,3292
81,0	$1,1969{\pm}0,0386$	1,2238	1,1211	1,2246	$1,0938{\pm}0,0287$	1,1475	1,0517	1,1483
276,4	0,2767±0,0138	0,2741	0,2635	0,2740	$0,2641\pm0,0144$	0,2620	0,2522	0,2617
302,9	$0,2748 \pm 0,0090$	0,2601	0,2515	0,2600	$0,2426\pm0,0077$	0,2486	0,2405	0,2486
356,0	0,2361±0,0054	0,2387	0,2324	0,2384	$0,2391{\pm}0,0054$	0,2283	0,2225	0,2282
383,9	0,2290±0,0115	0,2297	0,2247	0,2295	$0,2172\pm0,0113$	0,2197	0,2150	0,2194
511,0	$0,1926{\pm}0,0051$	0,1998	0,1979	0,1998	$0,\!1870\pm\!0,\!0048$	0,1913	0,1897	0,1913
661,7	$0,1716\pm0,0038$	0,1766	0,1762	0,1765	$0,1780{\pm}0,0039$	0,1691	0,1683	0,1692
1173,2	$0,1312{\pm}0,0031$	0,1330	0,1332	0,1329	$0,1309{\pm}0,0030$	0,1274	0,1275	0,1273
1274,5	0,1248±0,0032	0,1275	0,1278	0,1273	0,1215±0,0030	0,1222	0,1224	0,1219

Enerji		B50B	15			B50B2	0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	2,1544±0,0740	2,2077	2,0473	1,9332	$2,1280\pm0,0848$	2,0323	1,8835	2,0345
81,0	1,0354±0,0275	1,0934	1,0032	0,9820	$1,0384{\pm}0,0262$	1,0109	0,9271	1,0114
276,4	0,2471±0,0134	0,2543	0,2448	0,2517	0,2378±0,0127	0,2392	0,2305	0,2391
302,9	0,2368±0,0074	0,2414	0,2337	0,2396	0,2154±0,0068	0,2273	0,2201	0,2269
356,0	0,2317±0,0053	0,2212	0,2163	0,2210	$0,2110\pm0,0048$	0,2080	0,2040	0,2087
383,9	0,2159±0,0122	0,2135	0,2089	0,2127	$0,2056\pm0,0106$	0,2011	0,1970	0,2012
511,0	0,1942±0,0052	0,1860	0,1844	0,1861	$0,1806\pm0,0046$	0,1753	0,1740	0,1752
661,7	0,1630±0,0036	0,1645	0,1640	0,1649	$0,1632{\pm}0,0036$	0,1551	0,1549	0,1549
1173,2	0,1248±0,0029	0,1240	0,1243	0,1245	$0,1147\pm0,0027$	0,1169	0,1169	0,1167
1274,5	0,1138±0,0029	0,1189	0,1191	0,1193	0,1158±0,0029	0,1121	0,1123	0,1120
1332,5	0,1211±0,0027	0,1162	0,1164	0,1166	0,1037±0,0023	0,1096	0,1097	0,1095

Tablo 4.10. Devam %50 bronz ve farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş lineer azaltma katsayısı (cm⁻¹) değerleri

Tablo 4. 11. %50 pirinç ve farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş lineer azaltma katsayısı (cm⁻¹) değerleri

Enerji		5	SB			P50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,8790±0,0196	0,8834	0,9504	0,8839	$2,0269\pm0,0528$	2,1410	1,9602	2,1445
81,0	0,5487±0,0124	0,5272	0,4738	0,5273	$1,0503{\pm}0,0270$	1,0800	0,9785	1,0803
276,4	0,2210±0,0111	0,2187	0,2133	0,2187	0,2873±0,0138	0,2855	0,2746	0,2854
302,9	$0,2198 \pm 0,0065$	0,2102	0,2057	0,2101	$0,2645\pm0,0105$	0,0227	0,2634	0,2722
356,0	$0,1901{\pm}0,0044$	0,1963	0,1932	0,1964	$0,2403{\pm}0,0088$	0,2513	0,2450	0,2512
383,9	0,1820±0,0096	0,1900	0,1874	0,1903	$0,2282{\pm}0,0071$	0,2423	0,2376	0,2422
511,0	$0,1810\pm0,0047$	0,1680	0,1673	0,1677	$0,2012{\pm}0,0054$	0,2121	0,2100	0,2119
661,7	$0,1547{\pm}0,0034$	0,1496	0,1498	0,1495	$0,1820\pm0,0042$	0,1880	0,1875	0,1880
1173,2	$0,1134{\pm}0,0028$	0,1135	0,1137	0,1134	$0,1408{\pm}0,0027$	0,1420	0,1420	0,1419
1274,5	$0,1059{\pm}0,0026$	0,1089	0,1093	0,1090	$0,1363{\pm}0,0015$	0,1361	0,1363	0,1358
1332,5	$0,1009\pm0,0023$	0,1064	0,1067	0,1064	$0,1414{\pm}0,0013$	0,1331	0,1331	0,1331
Enerji		P50B5	5			P50B1	0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$1,9480\pm0,2230$	1,9864	1,8171	1,6896	$1,9164 \pm 0,0605$	1,8408	1,6855	1,8224
81,0	$1,0400\pm0,0458$	1,0062	0,9125	0,8856	0,9234±0,0233	0,9383	0,8504	0,9278
276,4	$0,2588 \pm 0,0144$	0,2716	0,2615	0,2653	$0,2440\pm0,0132$	0,2569	0,2477	0,2542
302,9	$0,2408 \pm 0,0089$	0,2574	0,2502	0,2535	$0,2493{\pm}0,0082$	0,2452	0,2379	0,2421
356,0	$0,2241\pm0,0055$	0,2386	0,2333	0,2348	0,2373±0,0053	0,2266	0,2213	0,2237
383,9	0,2119±0,0128	0,2303	0,2259	0,2268	$0,2168 \pm 0,0118$	0,2186	0,2143	0,2158
511,0	$0,1873{\pm}0,0050$	0,2017	0,1999	0,1993	0,2012±0,0053	0,1915	0,1902	0,1890
661,7	$0,1697{\pm}0,0039$	0,1788	0,1786	0,1768	$0,1787{\pm}0,0039$	0,1699	0,1696	0,1677
1173,2	$0,1189{\pm}0,0030$	0,1351	0,1352	0,1337	$0,1322{\pm}0,0031$	0,1284	0,1286	0,1268
1173,2 1274,5	0,1189±0,0030 0,1248±0,0034	0,1351 0,1297	0,1352 0,1300	0,1337 0,1283	0,1322±0,0031 0,1202±0,0030	0,1284 0,1231	0,1286 0,1234	0,1268 0,1215

Enerji		P50B1	5			P50B2	0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	1,7216±0,0439	1,7723	1,6218	1,7751	$1,5927{\pm}0,0381$	1,6459	1,5431	1,6861
81,0	0,8817±0,0224	0,9079	0,8238	0,9084	$0,8741 \pm 0,0262$	0,8514	0,7877	0,8670
276,4	$0,2422\pm0,012$	0,2528	0,2440	0,2526	0,2445±0,0133	0,2451	0,2369	0,2452
302,9	0,2333±0,0075	0,2413	0,2340	0,2411	0,2385±0,0077	0,2343	0,2273	0,2338
356,0	$0,2304{\pm}0,0051$	0,2231	0,2179	0,2230	$0,2252 \pm 0,0050$	0,2166	0,2118	0,2165
383,9	0,2112±0,0111	0,2153	0,2111	0,2153	0,2138±0,0123	0,2092	0,2052	0,2089
511,0	$0,1836\pm0,0048$	0,1887	0,1871	0,1887	$0,1779\pm0,0047$	0,1835	0,1819	0,1833
661,7	0,1607±0,0036	0,1674	0,1672	0,1672	$0,1668 \pm 0,0036$	0,1629	0,1624	0,1625
1173,2	$0,1309\pm0,0030$	0,1266	0,1267	0,1265	$0,1209{\pm}0,0028$	0,1232	0,1232	0,1228
1274,5	$0,1237{\pm}0,0031$	0,1213	0,1216	0,1212	$0,1243{\pm}0,0031$	0,1181	0,1183	0,1179
1332,5	0,1143±0,0026	0,1186	0,1188	0,1185	0,1124±0,0025	0,1154	0,1154	0,1152

Tablo 4.11. Devam %50 pirinç ve farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş lineer azaltma katsayısı (cm⁻¹) değerleri

Tablo 4. 12. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş lineer azaltma katsayısı (cm⁻¹)

Enerji		S	В			C50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,8790±0,0196	0,8834	0,9504	0,8839	1,5880±0,0435	1,6299	2,0946	1,6319
81,0	$0,5487 \pm 0,0124$	0,5272	0,4738	0,5273	$0,8300{\pm}0,0246$	0,8508	1,0242	0,8514
276,4	0,2210±0,0111	0,2187	0,2133	0,2187	$0,2491\pm0,0135$	0,2539	0,2599	0,2540
302,9	$0,2198 \pm 0,0065$	0,2102	0,2057	0,2101	$0,2327\pm0,0122$	0,2427	0,2483	0,2426
356,0	$0,1901{\pm}0,0044$	0,1963	0,1932	0,1964	$0,2242{\pm}0,0094$	0,2248	0,2304	0,2249
383,9	$0,1820\pm0,0096$	0,1900	0,1874	0,1903	$0,2174\pm0,0132$	0,2171	0,2228	0,2173
511,0	$0,1810\pm0,0047$	0,1680	0,1673	0,1677	$0,1957{\pm}0,0083$	0,1906	0,1966	0,1906
661,7	$0,1547{\pm}0,0034$	0,1496	0,1498	0,1495	$0,1737{\pm}0,0017$	0,1693	0,1753	0,1691
1173,2	$0,1134{\pm}0,0028$	0,1135	0,1137	0,1134	$0,1261\pm0,0013$	0,1281	0,1327	0,1281
1274,5	$0,1059{\pm}0,0026$	0,1089	0,1093	0,1090	$0,1197{\pm}0,0014$	0,1227	0,1274	0,1229
1332,5	$0,1009\pm0,0023$	0,1064	0,1067	0,1064	$0,1258{\pm}0,0018$	0,1200	0,1243	0,1201
Enerji		C50B5				C50B1	.0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	1,5998±0,04115	1,6414	2,1095	1,6431	$1,4634\pm0,0339$	1,5424	1,9761	1,5421
81,0	$0,8374{\pm}0,0208$	0,8617	1,0353	0,8625	$0,7894{\pm}0,0196$	0,814	0,9745	0,8146
276,4	$0,2652\pm0,0130$	0,2616	0,2670	0,2614	$0,2596 \pm 0,0119$	0,2510	0,2562	0,2509
302,9	$0,2538{\pm}0,0088$	0,2501	0,2555	0,2502	$0,2509{\pm}0,0077$	0,2401	0,2452	0,2400
356,0	$0,2284{\pm}0,0052$	0,2317	0,2375	0,2317	$0,2335\pm0,0052$	0,2225	0,2278	0,2225
383,9	0,2181±0,0119	0,2239	0,2297	0,2239	$0,2173\pm0,0173$	0,2150	0,2202	0,2149
511,0	$0,1907{\pm}0,0050$	0,1966	0,2028	0,1965	$0,1785 \pm 0,0046$	0,1889	0,1946	0,1889
661,7	$0,1659{\pm}0,0036$	0,1746	0,1807	0,1746	$0,1641\pm0,0036$	0,1678	0,1735	0,1676
1173,2	$0,1371\pm0,0032$	0,1321	0,1368	0,1319	$0,1228{\pm}0,0029$	0,1270	0,1313	0,1268
1274,5	$0,1241\pm0,0031$	0,1267	0,1314	0,1264	$0,1185{\pm}0,0030$	0,1218	0,1261	0,1216
1222 5	0 1211+0 0027	0 1238	0 1 2 8 3	0 1237	0.1240 ± 0.0028	0 1190	0 1 2 3 2	0 1100

Enerji (keV)	C50B15				C50B20			
	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$1,4063\pm0,0325$	1,4535	1,8607	1,4565	1,2850±0,0294	1,3510	1,7290	1,3564
81,0	$0,7560{\pm}0,0187$	0,7716	0,9226	0,7729	0,6970±0,0196	0,7214	0,8614	0,7236
276,4	0,2518±0,0137	0,2419	0,2467	0,2417	0,2253±0,0111	0,2298	0,2342	0,2297
302,9	$0,2292{\pm}0,0072$	0,2314	0,2360	0,2312	0,2296±0,0077	0,2198	0,2241	0,2196
356,0	0,2216±0,0051	0,2145	0,2195	0,2146	0,2128±0,0048	0,2040	0,2085	0,2039
383,9	$0,2097{\pm}0,0112$	0,2074	0,2123	0,2074	0,1960±0,0099	0,1972	0,2016	0,1971
511,0	$0,1799{\pm}0,0047$	0,1823	0,1878	0,1822	$0,1803{\pm}0,0047$	0,1734	0,1780	0,1734
661,7	$0,1545 \pm 0,0034$	0,1619	0,1675	0,1617	0,1529±0,0033	0,1541	0,1590	0,154
1173,2	$0,\!1180\pm\!0,\!0027$	0,1226	0,1267	0,1226	0,1167±0,0027	0,1166	0,1205	0,1165
1274,5	$0,1158\pm0,0029$	0,1175	0,1216	0,1175	$0,1064{\pm}0,0027$	0,1118	0,1156	0,1117
1332,5	0,1102±0,0025	0,1149	0,1187	0,1148	0,1130±0,0025	0,1093	0,1129	0,1092

Tablo 4.12. Devam %50 paslanmaz çelik alaşımı ve farklı oranlarda B_4C ile katkılandırılmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş lineer azaltma katsayısı (cm⁻¹) değerleri

Şekil 4.7. Bronz ile katkılanmış beton numunelerin lineer azaltma katsayısının enerjiye göre değişim grafiği

Şekil 4.8. Pirinç ile katkılanmış beton numunelerin lineer azaltma katsayısının enerjiye göre değişim grafiği

Şekil 4.9. Paslanmaz çelik ile katkılanmış beton numunelerin lineer azaltma katsayısının enerjiye göre değişim grafiği

Şekil 4.10. %50 bronz ve farklı oranlarda B₄C katkılanmış beton numunelerin lineer azaltma katsayısının enerjiye göre değişim grafiği

Şekil 4.11. %50 pirinç ve farklı oranlarda B₄C katkılanmış beton numunelerin lineer azaltma katsayısının enerjiye göre değişim grafiği

Şekil 4.12. %50 paslanmaz çelik ve farklı oranlarda B4C katkılanmış beton numunelerin lineer azaltma katsayısının enerjiye göre değişim grafiği

4.3 Yarı Kalınlık Değeri (YKD), Onda-Bir Kalınlık Değeri (OKD) ve Ortalama Serbest Yol (OSY) Parametrelerine Ait Araştırma Bulguları

Yarı kalınlık değeri (YKD, cm), başlangıç radyasyon şiddetinin yarısının düşürüldüğü numune kalınlığını ifade etmektedir. Farklı oranlarda bronz, pirinç, paslanmaz çelik veya B₄C katkılı hazırlanan beton numunelerin YKD'leri eşitlik (2.29) yardımı ile bulunmuştur.

Onda-bir kalınlık değeri (OKD, cm), başlangıçta maruz kalınan radyasyon şiddetinin %10'nun geçebileceği numune kalınlığıdır. Diğer bir deyişle başlangıç radyasyon şiddetinin % 90'nın hedef malzemede azaltıldığı numune kalınlığını ifade etmektedir. Üretilen katkılı beton numunelerinin OKD'leri eşitlik (2.30) yardımıyla ile belirlenmiştir.

Fotonun madde içerisindeki ortalama serbest yolu, başlangıç radyasyon şiddetinin %36,8'sinin hedef materyalden geçebildiği numune kalınlığı olarak ifade edilmektedir. OSY değerleri eşitlik (2.31) yardımı belirlenmiştir. Her üç parametre hesabında da ana parametre değeri lineer azaltma katsayısıdır. Elde edilen YKD, OKD ve OSY değerleri bütün numuneler için daha kolay karşılaştırma yapabilmek adına tablolar halinde sunulmuştur.

Farklı oranlarda bronz, pirinç, paslanmaz çelik ve B₄C katkılanmış tüm beton numunelerin YKD, OKD ve OSY parametrelerinin teorik, simülasyon ve deneysel sonuçları Tablo 4.13- 4.30'da sunulmuştur. Elde edilen veriler neticesinde oluşturulan grafikler Şekil 4.13-4.30'da sunulmuştur.

Enorii			SB			B10)	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$0,7886 \pm 0,0583$	0,7846	0,7293	0,7842	0,5121±0,0113	0,4965	0,5450	0,4961
81,0	$1,2632\pm0,0951$	1,3148	1,4628	1,3146	$0,9177 \pm 0,0216$	0,9099	1,0044	0,9092
276,4	3,1371±0,5213	3,1690	3,2498	3,1700	$2,7960\pm0,1329$	2,7415	2,8257	2,7432
302,9	$3,1536\pm0,5116$	3,2973	3,3702	3,2990	$2,7391\pm0,0854$	2,8628	2,9381	2,8641
356,0	$3,6488 \pm 0,5098$	3,5312	3,5868	3,5284	$3,1495{\pm}0,0705$	3,0829	3,1408	3,0857
383,9	$3,8079\pm0,4896$	3,6473	3,6979	3,6430	3,2943±0,1915	3,1895	3,2388	3,1916
511,0	$3,8291\pm0,5223$	4,1269	4,1432	4,1336	$3,7577\pm0,0972$	3,6249	3,6439	3,6289
661,7	4,4817±0,5214	4,6331	4,6281	4,6354	$3,9377 \pm 0,0862$	4,0787	4,0756	4,0838
1173,2	6,1137±0,5168	6,1049	6,0955	6,1117	$5,6796 \pm 0,1325$	5,3849	5,3800	5,3904
1274,5	$6,5479{\pm}0,5032$	6,3674	6,3444	6,3600	$5,5348 \pm 0,1393$	5,6184	5,6034	5,6161
1332,5	$6,8698 \pm 0,0517$	6,5143	6,4972	6,5167	$5,6095 \pm 0,1271$	5,7474	5,7340	5,7570
Enerji		B2()			B30)	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,4129±0,0096	0,3909	0,4260	0,3906	0,3293±0,0090	0,3199	0,3468	0,3195
81,0	0,7741±0,0173	0,7509	0,8253	0,7502	$0,6344{\pm}0,0164$	0,6325	0,6926	0,6323
276,4	2,4935±0,1371	2,6315	2,7189	2,6348	2,5355±0,1423	2,4748	2,5670	2,4794
302,9	$2,6527{\pm}0,0858$	2,7565	2,8373	2,7559	$2,7261\pm0,0891$	2,5991	2,6804	2,6038
356,0	$2,8102\pm0,0641$	2,9807	3,0468	2,9826	3,0484±0,0719	2,8203	2,8876	2,8240
383,9	3,1179±0,1829	3,0883	3,1449	3,0891	$2,7798\pm0,1470$	2,9257	2,9845	2,9305
511,0	$3,7085 \pm 0,0938$	3,5231	3,5517	3,5245	$3,5388{\pm}0,0905$	3,3481	3,3753	3,3500
661,7	$3,8610\pm0,0849$	3,9714	3,8395	3,9701	$3,8772 \pm 0,0850$	3,7801	3,7832	3,7826
1173,2	$4,8286\pm0,1180$	5,2525	5,2409	5,2578	$4,8937{\pm}0,1130$	5,0070	5,0024	5,0097
1274,5	5,8331±0,1459	5,4805	5,4645	5,4818	$5,4364\pm0,1366$	5,2245	5,2047	5,2296
1332,5	$5,7338\pm0,1289$	5,6063	5,5964	5,6130	$5,2170\pm0,1150$	5,3444	5,3324	5,3442
Enerji		B4()			B50)	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,2959±0,0110	0,2817	0,3052	0,2817	0,2589±0,0091	0,2443	0,2640	0,2440
81,0	0,5537±0,0134	0,5681	0,6226	0,5678	0,5209±0,0125	0,4996	0,5456	0,4991
276,4	2,4165±0,1250	2,4184	2,5177	2,4196	2,3994±0,1163	2,2741	2,3676	2,2753
302,9	$2,6371\pm0,0854$	2,5454	2,6391	2,5480	$2,2612\pm0,0708$	2,3980	2,4833	2,3987
356,0	$2,6677 \pm 0,0604$	2,7702	2,8458	2,7725	$2,6317\pm0,0600$	2,6164	2,6881	2,6199
383,9	2,9258±0,1614	2,8768	2,9397	2,8747	$2,8558{\pm}0,1438$	2,7196	2,7820	2,7203
511,0	$3,3148 \pm 0,0879$	3,3011	3,3374	3,2996	$3,1800{\pm}0,0837$	3,1280	3,1578	3,1285
661,7	3,7121±0,0817	3,7320	3,7442	3,7335	$3,6140\pm0,0792$	3,5404	3,5493	3,5403
1173,2	4,7539±0,1111	4,9497	4,9504	4,9585	4,7252±0,1096	4,7011	4,7036	4,7067
1274,5	5,0458±0,1279	5,1649	5,1591	5,1631	4,7954±0,1212	4,9055	4,8921	4,9100
1332.5	5,1078±0,1156	5,2834	5,2819	5,2901	5,0552±0,1139	5,0181	5,0102	5.0196

Tablo 4. 13. Bronz katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş YKD'leri (cm)

Enerji		S	В			P1(P10 eorik GEANT4 FLUKA 5507 0,6089 0,5504 9861 1,0943 0,9856 7505 2,8329 2,7534 8679 2,9375 2,8671 0821 3,1365 3,0867 1864 3,2338 3,1863 6149 3,6347 3,6169 0638 4,0642 4,0648 3606 5,3586 5,3743 5929 5,5833 5,5999 7212 5,6896 5,7246 P30 E E FLUKA 3975 0,4358 0,3970 7615 0,8426 0,7612					
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA				
59,5	$0,7886 \pm 0,0583$	0,7846	0,7293	0,7842	0,5487±0,0124	0,5507	0,6089	0,5504				
81,0	$1,2632{\pm}0,0951$	1,3148	1,4628	1,3146	$1,0123\pm0,0244$	0,9861	1,0943	0,9856				
276,4	3,1371±0,5213	3,1690	3,2498	3,1700	$2,8917\pm0,1561$	2,7505	2,8329	2,7534				
302,9	3,1536±0,5116	3,2973	3,3702	3,2990	$2,9023\pm0,0939$	2,8679	2,9375	2,8671				
356,0	$3,6488 \pm 0,5098$	3,5312	3,5868	3,5284	$2,9406\pm0,0659$	3,0821	3,1365	3,0867				
383,9	$3,8079\pm0,4896$	3,6473	3,6979	3,6430	$3,2344\pm0,1631$	3,1864	3,2338	3,1863				
511,0	3,8291±0,5223	4,1269	4,1432	4,1336	$3,5630\pm0,0910$	3,6149	3,6347	3,6169				
661,7	$4,4817\pm0,5214$	4,6331	4,6281	4,6354	$3,9740\pm0,0865$	4,0638	4,0642	4,0648				
1173,2	6,1137±0,5168	6,1049	6,0955	6,1117	$5,1913\pm0,1204$	5,3606	5,3586	5,3743				
1274,5	$6,5479 \pm 0,5032$	6,3674	6,3444	6,3600	$5,4002\pm0,1367$	5,5929	5,5833	5,5999				
1332,5	6,8698±0,0517	6,5143	6,4972	6,5167	5,5540±0,1245	5,7212	5,6896	5,7246				
Enerji		P20)			P30)					
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA				
59,5	$0,4744 \pm 0,0115$	0,4526	0,4980	0,4523	$0,4092{\pm}0,095$	0,3975	0,4358	0,3970				
81,0	$0,8754{\pm}0,0214$	0,8438	0,9346	0,8429	$0,7890\pm0,0193$	0,7615	0,8426	0,7612				
276,4	2,5977±0,1491	2,6180	2,7071	2,6173	$2,6058\pm0,1570$	2,5631	2,6532	2,5655				
302,9	$2,7476\pm0,0878$	2,7348	2,8105	2,7351	$2,5935{\pm}0,0823$	2,6817	2,7599	2,6820				
356,0	$2,8017\pm0,0623$	2,9465	3,0075	2,9471	2,7812±0,0623	2,8953	2,9587	2,8968				
383,9	$3,1032{\pm}0,1586$	3,0488	3,1022	3,0479	$3,0479\pm0,1553$	2,9981	3,0537	2,9939				
511,0	$3,4590\pm0,0904$	3,4665	3,4880	3,4681	3,5416±0,0925	3,4153	3,4390	3,4206				
661,7	$4,0208 \pm 0,0884$	3,9012	3,9040	3,9013	$3,8479\pm0,0838$	3,8471	3,8563	3,8505				
1173,2	$5,0788 \pm 0,1178$	5,1516	5,1489	5,1615	4,8112±0,1124	5,0848	5,0894	5,0892				
1274,5	$5,0838 \pm 0,1281$	5,3748	5,3616	5,3790	$5,1895\pm0,1302$	5,3051	5,2960	5,3077				
1332,5	5,2777±0,1187	5,4981	5,4892	5,5021	5,5455±0,1244	5,4267	5,4211	5,4408				
Enerji		P40				P50						
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA				
59,5	$0,3752 \pm 0,0102$	0,3576	0,3924	0,3575	$0,3420\pm0,0089$	0,3238	0,3536	0,3232				
81,0	$0,7236\pm0,0210$	0,6984	0,7741	0,6986	$0,6600 \pm 0,0170$	0,6418	0,7084	0,6416				
276,4	$2,6044\pm0,1540$	2,5073	2,6035	2,5088	$2,4124\pm0,1118$	2,4279	2,5238	2,4283				
302,9	$2,6263 \pm 0,0778$	2,6268	2,7134	2,6278	$2,6205\pm0,0831$	2,5466	2,6311	2,5464				
356,0	$2,8638 \pm 0,0649$	2,8412	2,9149	2,8392	$2,8846\pm0,0656$	2,7588	2,8297	2,7595				
383,9	$3,0176\pm0,1676$	2,9440	3,0100	2,9431	$3,0378\pm0,1989$	2,8602	2,9174	2,8620				
511,0	$3,5337 \pm 0,0928$	3,3591	3,3902	3,3609	$3,4449\pm0,0914$	3,2681	3,3003	3,2719				
661,7	$3,6149 \pm 0,0796$	3,7868	3,7989	3,7873	$3,8079 \pm 0,0831$	3,6868	3,6971	3,6875				
1173,2	4,8381±0,1137	5,0090	5,0159	5,0119	4,9224±0,1150	4,8800	4,8817	4,8837				
1274,5	$5,0876\pm0,1282$	5,2261	5,2268	5,2264	$5,0860 \pm 0,1283$	5,0914	5,0844	5,1046				
1332,5	$5,1633{\pm}0,1164$	5,3457	5,3513	5,3500	4,9016±0,1093	5,2079	5,2074	5,2066				

Tablo 4. 14. Pirinç katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş karşılaştırmalı YKD'leri (cm)

Enorii		S	В			C1()	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$0,7886 \pm 0,0583$	0,7846	0,7293	0,7842	0,7187±0,0163	0,6788	0,6500	0,6785
81,0	$1,2632\pm0,0951$	1,3148	1,4628	1,3146	1,2294±0,0297	1,1936	1,1888	1,1932
276,4	3,1371±0,5213	3,1690	3,2498	3,1700	$3,2835\pm0,1580$	3,1847	3,2239	3,1865
302,9	3,1536±0,5116	3,2973	3,3702	3,2990	$3,1833{\pm}0,1072$	3,3181	3,3489	3,3195
356,0	$3,6488 \pm 0,5098$	3,5312	3,5868	3,5284	$3,6679 \pm 0,0820$	3,5626	3,5792	3,5652
383,9	$3,8079\pm0,4896$	3,6473	3,6979	3,6430	$3,7616\pm0,2166$	3,6818	3,6893	3,6780
511,0	3,8291±0,5223	4,1269	4,1432	4,1336	4,3640±0,118	4,1733	4,1552	4,1786
661,7	4,4817±0,5214	4,6331	4,6281	4,6354	4,6775±0,1019	4,6896	4,6429	4,6952
1173,2	6,1137±0,5168	6,1049	6,0955	6,1117	$6,0940{\pm}0,1406$	6,1838	6,1228	6,1916
1274,5	$6,5479{\pm}0,5032$	6,3674	6,3444	6,3600	6,2587±0,1526	6,4517	6,3682	6,4546
1332,5	$6,8698 \pm 0,0517$	6,5143	6,4972	6,5167	$6,7612{\pm}0,1510$	6,5997	6,5217	6,6020
Enerji		C20)			C3()	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,6096±0,0189	0,5787	0,5088	0,5786	0,5535±0,0201	0,5238	0,4357	0,5234
81,0	$1,0679 \pm 0,0265$	1,0509	0,9751	1,0505	$0,9902{\pm}0,0183$	0,9732	0,8606	0,9724
276,4	$3,0370\pm0,1538$	3,0291	3,0317	3,1089	$3,0480\pm0,1402$	2,9809	2,9563	2,9797
302,9	$3,1318\pm0,1023$	3,1601	3,1597	3,1628	3,0225±0,1105	3,1132	3,0876	3,1155
356,0	$3,4681\pm0,0942$	3,3986	3,3836	3,4010	$3,4395{\pm}0,0978$	3,3529	3,3154	3,3538
383,9	$3,6170\pm0,1879$	3,5145	3,4933	3,5127	$3,5105{\pm}0,1609$	3,4689	3,4197	3,4718
511,0	$4,1373\pm0,1063$	3,9896	3,9352	3,9869	$3,7566 \pm 0,1243$	3,9430	3,8630	3,9492
661,7	$4,3273 \pm 0,0998$	4,4865	4,4058	4,4906	$4,3169\pm0,1294$	4,4368	4,3287	4,4424
1173,2	6,2255±0,1397	5,9202	5,8161	5,9217	5,6223±0,1136	5,8583	5,7126	5,8679
1274,5	6,0686±0,1469	6,1767	6,0570	6,1807	6,5145±0,1029	6,1120	5,9494	6,1203
1332,5	6,6863±0,1597	6,3183	6,1975	6,3255	6,3821±0,1502	6,2521	6,0916	6,2581
Enerji		C4()			C5()	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,4863±0,0199	0,4737	0,3794	0,4734	0,4365±0,0120	0,4253	0,3309	0,4248
81,0	0,9154±0,0212	0,8954	0,7641	0,8947	$0,8352{\pm}0,0209$	0,8147	0,6768	0,8142
276,4	$2,9621\pm0,1387$	2,8807	2,8368	2,8824	$2,7821\pm0,1267$	2,7298	2,6668	2,7288
302,9	$2,9344{\pm}0,1064$	3,0113	2,9624	3,0136	$2,9784{\pm}0,0925$	2,8559	2,7920	2,8569
356,0	$3,2305\pm0,1143$	3,2472	3,1903	3,2479	$3,0920{\pm}0,0698$	3,0828	3,0087	3,0823
383,9	$3,3546\pm0,0917$	3,3610	3,2933	3,3632	3,1885±0,1939	3,1920	3,1118	3,1894
511,0	3,7186±0,9934	3,8245	3,7232	3,8259	$3,5415\pm0,0919$	3,6358	3,5262	3,6376
661,7	$4,1994{\pm}0,1359$	4,3058	4,1741	4,3075	$3,9896 \pm 0,0872$	4,0952	3,9537	4,0979
1173,2	$5,8063 \pm 0,1297$	5,6883	5,5165	5,6929	$5,4966 \pm 0,1278$	5,4126	5,2244	5,4101
1274,5	$5,6572 \pm 0,1294$	5,9347	5,7454	5,9485	$5,7924{\pm}0,1448$	5,6470	5,4416	5,6393
1332,5	6,3418±0,1306	6,0706	5,8819	6,0807	5,5110±0,1230	5,7763	5,5743	5,771

Tablo 4. 15. Paslanmış çelik katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş karşılaştırmalı YKD'leri (cm)

Enerii		Ś	SB			B50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,7886±0,0583	0,7846	0,7293	0,7842	0,2589±0,0091	0,2443	0,2640	0,2440
81,0	1,2632±0,0951	1,3148	1,4628	1,3146	0,5209±0,0125	0,4996	0,5456	0,4991
276,4	3,1371±0,5213	3,1690	3,2498	3,1700	2,3994±0,1163	2,2741	2,3676	2,2753
302,9	3,1536±0,5116	3,2973	3,3702	3,2990	2,2612±0,0708	2,3980	2,4833	2,3987
356,0	3,6488±0,5098	3,5312	3,5868	3,5284	2,6317±0,0600	2,6164	2,6881	2,6199
383,9	3,8079±0,4896	3,6473	3,6979	3,6430	2,8558±0,1438	2,7196	2,7820	2,7203
511,0	3,8291±0,5223	4,1269	4,1432	4,1336	$3,1800\pm0,0837$	3,1280	3,1578	3,1285
661,7	4,4817±0,5214	4,6331	4,6281	4,6354	3,6140±0,0792	3,5404	3,5493	3,5403
1173,2	6,1137±0,5168	6,1049	6,0955	6,1117	4,7252±0,1096	4,7011	4,7036	4,7067
1274,5	6,5479±0,5032	6,3674	6,3444	6,3600	4,7954±0,1212	4,9055	4,8921	4,9100
1332,5	6,8698±0,0517	6,5143	6,4972	6,5167	5,0552±0,1139	5,0181	5,0102	5,0196
Enerji		B50B	5			B50B1	0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,2822±0,0135	0,2782	0,2998	0,2779	0,3072±0,0106	0,2978	0,3213	0,2976
81,0	0,5791±0,0177	0,5664	0,6183	0,566	0,6337±0,0166	0,604	0,6591	0,6036
276,4	2,5048±0,1250	2,5287	2,6306	2,5296	$2,6245\pm0,1433$	2,6458	2,7485	2,6488
302,9	2,5223±0,0829	2,6645	2,7563	2,6657	$2,8568 \pm 0,0911$	2,7885	2,8817	2,7884
356,0	2,9352±0,0674	2,9037	2,9831	2,9077	$2,8984{\pm}0,0657$	3,0367	3,1157	3,0377
383,9	3,0269±0,1516	3,0182	3,0854	3,0200	$3,1917{\pm}0,1663$	3,1547	3,2245	3,1589
511,0	$3,5982{\pm}0,0949$	3,4697	3,5030	3,4692	$3,7066 \pm 0,0950$	3,6240	3,6544	3,6239
661,7	4,0388±0,0890	3,9255	3,9334	3,9279	$3,8944{\pm}0,0825$	4,0987	4,1197	4,0974
1173,2	5,2811±0,1233	5,2115	5,2057	5,2165	$5,2965 \pm 0,1228$	5,4391	5,4357	5,4443
1274,5	$5,5535 \pm 0,1403$	5,4351	5,4255	5,4463	$5,7064 \pm 0,1430$	5,6738	5,6651	5,6858
1332,5	5,7887±0,1307	5,5611	5,5512	5,5649	$6,0186{\pm}0,1359$	5,8043	5,7972	5,8119
Enerji		B50B	15			B50B2	0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,3217±0,0111	0,314	0,3386	0,3585	0,3257±0,0130	0,3411	0,368	0,3407
81,0	0,6695±0,0178	0,6339	0,6909	0,7059	$0,6675 \pm 0,0168$	0,6857	0,7477	0,6853
276,4	2,8050±0,1524	2,7260	2,8311	2,7541	2,9152±0,1553	2,8981	3,0073	2,8995
302,9	2,9275±0,0914	2,8709	2,9661	2,8930	$3,2183\pm0,1011$	3,0499	3,1486	3,0545
356,0	2,9919±0,0683	3,1335	3,2050	3,1365	$3,2843{\pm}0,0741$	3,3329	3,3976	3,3217
383,9	$3,2109\pm0,1808$	3,2461	3,3182	3,2582	$3,3718\pm0,1738$	3,4462	3,5184	3,4458
511,0	3,5701±0,0959	3,7267	3,7598	3,7243	$3,8380{\pm}0,0981$	3,9539	3,9841	3,9569
661,7	4,2532±0,0932	4,2136	4,2258	4,2034	$4,2483{\pm}0,0931$	4,4695	4,4752	4,4759
1173,2	5,5553±0,1284	5,5898	5,5766	5,5673	$6,0452{\pm}0,1397$	5,9274	5,9272	5,9373
1274,5	6,0903±0,1535	5,8312	5,8205	5,8114	$5,9859{\pm}0,1497$	6,1825	6,1702	6,1910
1332,5	5,7245±0,1292	5,9654	5,9545	5,9447	6,6838±0,1506	6,3261	6,3167	6,3327

Tablo 4. 16. %50 bronz ve farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş YKD'leri (cm)

Tablo 4. 17. %50 pirinç ve farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş YKD'leri cm)

Enerji			SB		P50			
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$0,7886 \pm 0,0583$	0,7846	0,7293	0,7842	$0,3420{\pm}0,0089$	0,3238	0,3536	0,3232
81,0	1,2632±0,0951	1,3148	1,4628	1,3146	$0,6600 \pm 0,0170$	0,6418	0,7084	0,6416
276,4	3,1371±0,5213	3,169	3,2498	3,1700	2,4124±0,1118	2,4279	2,5238	2,4283
302,9	3,1536±0,5116	3,2973	3,3702	3,299	$2,6205\pm0,0831$	2,5466	2,6311	2,5464
356,0	$3,6488 \pm 0,5098$	3,5312	3,5868	3,5284	$2,8846\pm0,0656$	2,7588	2,8297	2,7595
383,9	$3,8079\pm0,4896$	3,6473	3,6979	3,6430	$3,0378\pm0,1989$	2,8602	2,9174	2,862
511,0	3,8291±0,5223	4,1269	4,1432	4,1336	$3,4449\pm0,0914$	3,2681	3,3003	3,2719
661,7	4,4817±0,5214	4,6331	4,6281	4,6354	$3,8079 \pm 0,0831$	3,6868	3,6971	3,6875
1173,2	6,1137±0,5168	6,1049	6,0955	6,1117	4,9224±0,1150	4,8800	4,8817	4,8837
1274,5	6,5479±0,5032	6,3674	6,3444	6,3600	$5,0860\pm0,1283$	5,0914	5,0844	5,1046
1332,5	6,8698±0,0517	6,5143	6,4972	6,5167	4,9016±0,1093	5,2079	5,2074	5,2066
Enerji		P50B5	5			P50B1	.0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,3558±0,0106	0,3490	0,3815	0,4102	0,3617±0,0114	0,3765	0,4112	0,3803
81,0	$0,6665 \pm 0,0180$	0,6889	0,7596	0,7827	$0,7506 \pm 0,0189$	0,7388	0,8151	0,7471
276,4	$2,6786\pm0,1441$	2,5519	2,6508	2,6123	2,8404±0,1536	2,698	2,7981	2,727
302,9	$2,8783 \pm 0,0980$	2,6924	2,7699	2,7340	$2,7798 \pm 0,0917$	2,8265	2,9140	2,8629
356,0	$3,0934{\pm}0,0698$	2,9056	2,9711	2,9525	2,9207±0,0653	3,0590	3,1323	3,0985
383,9	3,2718±0,1883	3,0100	3,0688	3,0557	$3,1978{\pm}0,1735$	3,1702	3,2344	3,212
511,0	3,7010±0,0963	3,4364	3,4668	3,4783	$3,4453{\pm}0,0905$	3,6189	3,6441	3,6684
661,7	$4,0841\pm0,0894$	3,8768	3,8810	3,9198	$3,8787{\pm}0,0846$	4,0806	4,0879	4,1336
1173,2	5,8275±0,1346	5,1306	5,1261	5,1862	5,2419±0,1213	5,3989	5,3909	5,4656
1274,5	5,5555±0,1390	5,3455	5,3309	5,4025	$5,7654{\pm}0,1446$	5,6314	5,6177	5,7033
1332,5	5,6644±0,1273	5,4752	5,4621	5,5297	$5,9640 \pm 0,1335$	5,7606	5,7499	5,8374
Enerji		P50B1	5			P50B2	20	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,4026±0,0103	0,3911	0,4274	0,3905	0,4352±0,0104	0,4211	0,4492	0,4111
81,0	$0,7861 \pm 0,0200$	0,7635	0,8414	0,7631	$0,7930{\pm}0,0238$	0,8141	0,8800	0,7995
276,4	2,8621±0,1319	2,7415	2,8411	2,7438	2,8347±0,1546	2,8282	2,9260	2,8267
302,9	2,9715±0,0950	2,8724	2,9627	2,8750	$2,9060\pm0,0934$	2,9583	3,0489	2,9642
356,0	3,0081±0,0672	3,1063	3,1810	3,1080	$3,0778 \pm 0,0689$	3,1997	3,2725	3,2011
383,9	3,2824±0,1723	3,2188	3,2835	3,2196	3,2415±0,1858	3,3128	3,3777	3,3188
511,0	$3,7761 \pm 0,0982$	3,6727	3,7050	3,6742	3,8952±0,1026	3,7765	3,8102	3,7819
661,7	4,3124±0,0957	4,1404	4,1449	4,1444	4,1555±0,0907	4,2553	4,2684	4,265
1173,2	$5,2940\pm0,1231$	5,4773	5,4701	5,4785	5,7329±0,1351	5,6268	5,6257	5,6466
1274,5	5,6031±0,1415	5,7134	5,6984	5,7205	$5,5780{\pm}0,1405$	5,8692	5,8581	5,8769
1332,5	6,0639±0,1356	5,8436	5,8367	5,8496	6,1683±0,1382	6,0039	6,0090	6,0144

Enerji		S	В			C50							
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA					
59,5	$0,7886 \pm 0,0583$	0,7846	0,7293	0,7842	0,4365±0,0120	0,4253	0,3309	0,4248					
81,0	$1,2632{\pm}0,0951$	1,3148	1,4628	1,3146	0,8352±0,0209	0,8147	0,6768	0,8142					
276,4	3,1371±0,5213	3,1690	3,2498	3,1700	2,7821±0,1267	2,7298	2,6668	2,7288					
302,9	3,1536±0,5116	3,2973	3,3702	3,2990	$2,9784{\pm}0,0925$	2,8559	2,7920	2,8569					
356,0	$3,6488 \pm 0,5098$	3,5312	3,5868	3,5284	$3,0920{\pm}0,0698$	3,0828	3,0087	3,0823					
383,9	$3,8079\pm0,4896$	3,6473	3,6979	3,6430	$3,1885{\pm}0,1939$	3,1920	3,1118	3,1894					
511,0	$3,8291 \pm 0,5223$	4,1269	4,1432	4,1336	$3,5415\pm0,0919$	3,6358	3,5262	3,6376					
661,7	4,4817±0,5214	4,6331	4,6281	4,6354	$3,9896{\pm}0,0872$	4,0952	3,9537	4,0979					
1173,2	6,1137±0,5168	6,1049	6,0955	6,1117	$5,4966 \pm 0,1278$	5,4126	5,2244	5,4101					
1274,5	$6,5479 \pm 0,5032$	6,3674	6,3444	6,3600	$5,7924{\pm}0,1448$	5,6470	5,4416	5,6393					
1332,5	6,8698±0,0517	6,5143	6,4972	6,5167	$5,5110\pm0,1230$	5,7763	5,5743	5,771					
Enerji	_	C50B5	;			C50B1	0						
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA					
59,5	0,4333±0,0113	0,4223	0,3286	0,4219	0,4737±0,0110	0,4494	0,3508	0,4495					
81,0	$0,8277 \pm 0,0206$	0,8044	0,6695	0,8036	$0,8781 \pm 0,0218$	0,8516	0,7113	0,8509					
276,4	2,6135±0,1279	2,6500	2,5957	2,6516	$2,6698 \pm 0,1225$	2,7617	2,7059	2,7626					
302,9	2,7313±0,0950	2,7717	2,7129	2,7708	$2,7629{\pm}0,0845$	2,8863	2,8267	2,8886					
356,0	$3,0347{\pm}0,0685$	2,9917	2,9185	2,9909	$2,9687{\pm}0,0667$	3,1159	3,0427	3,1153					
383,9	$3,1784\pm0,1740$	3,0962	3,0180	3,0954	$3,1899{\pm}0,1653$	3,2235	3,1476	3,2253					
511,0	3,6352±0,0951	3,5250	3,4172	3,5276	$3,8829{\pm}0,1010$	3,6692	3,5618	3,6703					
661,7	4,1777±0,0909	3,9695	3,8354	3,9700	4,2237±0,0923	4,1310	3,9952	4,1352					
1173,2	$5,0565 \pm 0,1176$	5,2464	5,0663	5,2536	$5,6436\pm0,1315$	5,4581	5,2797	5,4663					
1274,5	$5,5836\pm0,1403$	5,4721	5,2760	5,4836	$5,8495{\pm}0,1460$	5,6930	5,4975	5,6989					
1332,5	5,7230±0,1279	5,597	5,4026	5,6036	$5,5890{\pm}0,1254$	5,8231	5,628	5,8228					
Enerji		C50B1	5			C50B2	20						
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA					
59,5	0,4929±0,0114	0,4769	0,3725	0,4759	$0,5394{\pm}0,0123$	0,5131	0,4009	0,511					
81,0	0,9168±0,0227	0,8983	0,7513	0,8968	$0,9945{\pm}0,0280$	0,9609	0,8046	0,9579					
276,4	$2,7529{\pm}0,1495$	2,8655	2,8091	2,8679	$3,0770\pm0,1511$	3,0162	2,9598	3,0172					
302,9	$3,0244{\pm}0,0944$	2,9951	2,9376	2,9981	$3,0195{\pm}0,1008$	3,1530	3,0929	3,1557					
356,0	$3,1278\pm0,0722$	3,2308	3,1575	3,2294	$3,2567{\pm}0,0734$	3,3985	3,3242	3,3988					
383,9	$3,3058 \pm 0,1769$	3,3420	3,2652	3,3426	$3,5366 \pm 0,1790$	3,5150	3,4384	3,516					
511,0	$3,8525 \pm 0,1007$	3,8023	3,6906	3,8051	$3,8436\pm0,0996$	3,9978	3,8934	3,9984					
661,7	4,4851±0,0980	4,2804	4,1382	4,2855	$4,5328{\pm}0,0988$	4,4990	4,3590	4,5018					
1173,2	5,8756±0,1366	5,6540	5,4688	5,6548	$5,9413{\pm}0,1386$	5,9429	5,7536	5,9508					
1274,5	5,9839±0,1496	5,8976	5,7007	5,8991	$6,5138{\pm}0,1627$	6,1982	5,9940	6,2029					
1332.5	6.2886±0.1410	6.0326	5.8378	6.0385	6.1331±0.1376	6.3401	6.1410	6.3485					

Tablo 4. 18. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş YKD'leri (cm)

Şekil 4.13. Bronz katkılanmış beton numunelerin YKD'lerinin enerjiye göre değişim grafiği

Şekil 4.14. Pirinç katkılanmış beton numunelerin YKD'lerinin enerjiye göre değişim grafiği

Şekil 4.15. Paslanmaz çelik katkılanmış beton numunelerin YKD'lerinin enerjiye göre değişim grafiği

Şekil 4.16. %50 bronz ve farklı oranlarda B₄C katkılanmış beton numunelerin YKD'lerinin enerjiye göre değişim grafiği

Şekil 4.17. %50 pirinç ve farklı oranlarda B₄C ile katkılanmış beton numunelerin YKD'lerinin enerjiye göre değişim grafiği

1 -0 -

(ma) dXKD (cm) 3

2· 1· 0·

Ö

0 -. 200 . 1200 . 1400 Enerji (keV) Enerji (keV)

Şekil 4.18. %50 paslanmaz çelik ve farklı oranlarda B4C katkılanmış beton numunelerin YKD'lerinin enerjiye göre değişim grafiği

Fnorii			SB			B10		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59.5	2,6196±0,0583	2,6065	2,4228	2,6052	$1,7010\pm0,0377$	1,6492	1,8103	1,6481
81.0	4,1963±0,0951	4,3677	4,8594	4,3670	$3,0484{\pm}0,0718$	3,0227	3,3365	3,0204
276.4	10,4212±0,5213	10,5274	10,7956	10,5307	9,2882±0,4416	9,1069	9,3869	9,1126
302.9	$10,4762\pm0,3098$	10,9535	11,1955	10,959	$9,0993{\pm}0,2838$	9,5099	9,7603	9,5144
356.0	12,1209±0,2786	11,7305	11,9153	11,7212	10,4624±0,2343	10,2411	10,4334	10,2506
383.9	12,6495±0,6675	12,116	12,2843	12,1016	$10,9434{\pm}0,6361$	10,5952	10,7592	10,6022
511.0	12,7200±0,3320	13,7092	13,7635	13,7314	12,4827±0,3248	12,0417	12,1048	12,0551
661.7	14,8878±0,3246	15,3909	15,3741	15,3984	13,0807±0,2863	13,5492	13,5387	13,5662
1173.2	20,3092±0,5059	20,2801	20,2487	20,3025	18,8674±0,4403	17,8882	17,8719	17,9065
1274.5	21,7516±0,5414	21,1520	21,0756	21,1276	18,3861±0,4629	18,6641	18,6139	18,6562
1332.5	22,8210±0,5142	21,6402	21,5833	21,6481	18,6344±0,4221	19,0926	19,0478	19,1242
Encuii		B20				B30		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59.5	1,3718±0,0563	1,2986	1,4153	1,2974	1,0940±0,0601	1,0627	1,1521	1,0614
81.0	2,5716±0,0791	2,4946	2,7417	2,4920	$2,1073\pm0,0685$	2,1013	2,3006	2,1004
276.4	8,2832±0,4781	8,7416	9,0321	8,7527	8,4226±0,5120	8,2211	8,5273	8,2364
302.9	8,8120±0,3347	9,1569	9,4254	9,1550	9,0560±0,4982	8,6340	8,9042	8,6495
356.0	9,3354±0,2931	9,9018	10,1212	9,9080	10,1266±0,4102	9,3688	9,5923	9,3810
383.9	10,3576±0,5996	10,2592	10,447	10,2618	9,2344±0,5408	9,7190	9,9142	9,7350
511.0	12,3193±0,4702	11,7034	11,7983	11,7082	11,7558±0,3987	11,1222	11,2125	11,1283
661.7	12,8260±0,4591	13,1927	12,7545	13,1883	12,8797±0,4012	12,5571	12,5674	12,5656
1173.2	16,0404±0,5403	17,4483	17,4098	17,4661	16,2564±0,5113	16,6328	16,6177	16,6420
1274.5	19,3770±0,4875	18,2058	18,1528	18,2101	18,0594±0,4703	17,3554	17,2898	17,3724
1332.5	19,0474±0,5021	18,6237	18,5908	18,646	17,3305±0,5105	17,7537	17,7139	17,7532
Fnerii		B40				B50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59.5	0,9830±0,0365	0,9359	1,0138	0,9359	0,8599±0,0303	0,8115	0,8771	0,8106
81.0	$1,8394{\pm}0,0347$	1,8872	2,0684	1,8862	$1,7302{\pm}0,0416$	1,6597	1,8125	1,6580
276.4	8,0274±0,3921	8,0337	8,3637	8,0378	$7,9706\pm0,3865$	7,5543	7,8651	7,5585
302.9	8,7601±0,3191	8,4556	8,7669	8,4641	7,5114±0,2351	7,9660	8,2495	7,9684
356.0	8,8618±0,3345	9,2024	9,4534	9,2100	$8,7425{\pm}0,1993$	8,6916	8,9296	8,7031
383.9	9,7194±0,4912	9,5565	9,7655	9,5495	9,4867±0,4776	9,0343	9,2417	9,0368
511.0	11,0116±0,2705	10,9659	11,0865	10,9610	$10,5638 \pm 0,2782$	10,391	10,4901	10,3927
661.7	12,3314±0,2843	12,3973	12,4379	12,4025	12,0053±0,2631	11,7611	11,7906	11,7605
1173.2	15,7922±0,3002	16,4426	16,4450	16,4719	15,6969±0,3639	15,6166	15,6251	15,6353
1274.5	16,7617±0,4196	17,1573	17,1381	17,1516	15,9298±0,4027	16,2958	16,2512	16,3107
1332.5	16,9678±0,2576	17,5509	17,5462	17,5732	16,7932±0,3785	16,6696	16,6435	16,6747

Tablo 4. 19. Bronz ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş OKD'leri (cm)

Enerji		S	B			P10		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	2,6196±0,0583	2,6065	2,4228	2,6052	$1,8229\pm0,0411$	1,8294	2,0226	1,8283
81,0	4,1963±0,0951	4,3677	4,8594	4,3670	$3,3629{\pm}0,0810$	3,2758	3,6352	3,2741
276,4	10,4212±0,5210	10,5274	10,7956	10,5307	9,6059±0,5185	9,1371	9,4106	9,1466
302,9	$10,4762\pm0,3098$	10,9535	11,1955	10,9590	9,6413±0,3110	9,5268	9,7581	9,5243
356,0	12,1209±0,2786	11,7305	11,9153	11,7212	$9,7685 \pm 0,2188$	10,2386	10,4193	10,2539
383,9	12,6495±0,6675	12,1160	12,2843	12,1016	10,7446±0,5418	10,5850	10,7424	10,5846
511,0	12,7200±0,3320	13,7092	13,7635	13,7314	11,8359±0,3023	12,0083	12,0742	12,0152
661,7	14,8878±0,3246	15,3909	15,3741	15,3984	13,2014±0,2872	13,4995	13,5009	13,5029
1173,2	20,3092±0,5059	20,2801	20,2487	20,3025	17,2450±0,3998	17,8076	17,8010	17,8532
1274,5	21,7516±0,5414	21,1520	21,0756	21,1276	17,9391±0,4541	18,5793	18,5473	18,6023
1332,5	22,8210±0,5142	21,6402	21,5833	21,6481	18,4499±0,4135	19,0056	18,9004	19,0169
Enerji		P20				P30		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$1,5759 \pm 0,0564$	1,5035	1,6542	1,5025	$1,3592{\pm}0,0493$	1,3206	1,4479	1,3190
81,0	$2,9081 \pm 0,0498$	2,8031	3,1046	2,8001	$2,6210\pm0,0601$	2,5297	2,7989	2,5286
276,4	8,6294±0,3391	8,6968	8,9928	8,6946	8,6564±0,3565	8,5144	8,8136	8,5223
302,9	9,1274±0,4762	9,0848	9,3362	9,0856	8,6154±0,3293	8,9083	9,1682	8,9093
356,0	9,3069±0,3982	9,7879	9,9907	9,7901	9,2389±0,2786	9,6180	9,8285	9,6230
383,9	10,3087±0,4552	10,1280	10,3054	10,1249	10,1249±0,4291	9,9596	10,1442	9,9455
511,0	$11,4905\pm0,4027$	11,5154	11,5870	11,5209	11,7651±0,2465	11,3454	11,4241	11,3631
661,7	13,3568±0,3208	12,9595	12,9687	12,9599	12,7826±0,3510	12,7799	12,8103	12,7912
1173,2	16,8715±0,2995	17,1132	17,1044	17,1461	15,9823±0,4113	16,8913	16,9065	16,9059
1274,5	16,8880±0,2361	17,8548	17,8109	17,8687	17,2392±0,2834	17,6233	17,5928	17,6318
1332,5	17,5321±0,5382	18,2641	18,2347	18,2777	18,4219±0,4772	18,0271	18,0084	18,0739
Enerji		P40				P50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$1,2465 \pm 0,0605$	1,1878	1,3034	1,1877	$1,1360\pm0,0296$	1,0755	1,1747	1,0737
81,0	$2,4039\pm0,0499$	2,3202	2,5714	2,3208	2,1924±0,0563	2,1320	2,3531	2,1313
276,4	8,6517±0,4094	8,3290	8,6485	8,3342	8,0140±0,3713	8,0654	8,3838	8,0666
302,9	$8,7245\pm0,4327$	8,7262	9,0136	8,7292	$8,7050\pm0,2759$	8,4598	8,7405	8,4589
356,0	9,5133±0,3018	9,4383	9,6830	9,4318	9,5824±0,2179	9,1644	9,4000	9,1670
383,9	$10,0243\pm0,4465$	9,7798	9,9991	9,7766	10,0913±0,6607	9,5013	9,6913	9,5074
511,0	11,7387±0,3996	11,1587	11,2620	11,1647	11,4436±0,3036	10,8563	10,9634	10,8689
661,7	12,0083±0,2298	12,5796	12,6195	12,5812	12,6497±0,2762	12,2472	12,2815	12,2494
1173,2	16,0718±0,4561	16,6395	16,6623	16,6491	16,3517±0,3819	16,2109	16,2167	16,2233
1274,5	16,9007±0,4333	17,3606	17,3630	17,3619	16,8952±0,4261	16,9133	16,8899	16,9573
1332,5	17,1521±0,3708	17,7581	17,7766	17,7722	16,2826±0,3623	17,3004	17,2986	17,2961

Tablo 4. 20. Pirinç alaşımı ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş OKD'leri (cm)

Enerji		S	В			C10 ysel Teorik GEANT4 FLUK 0,0593 2,2548 2,1593 2,253 0,0983 3,9651 3,9492 3,963 ±0,5342 10,5793 10,7097 10,583 ±0,4703 11,0226 11,1248 11,022 ±0,5119 11,8345 11,8900 11,843 ±0,7093 12,2307 12,2555 12,213 ±0,5493 13,8634 13,8031 13,888 ±0,5201 15,5785 15,4235 15,597 ±0,4571 20,5420 20,3394 20,567 ±0,4499 21,4320 21,1546 21,444			
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	$2,6196\pm0,0583$	2,6065	2,4228	2,6052	2,3873±0,0593	2,2548	2,1593	2,2539	
81,0	4,1963±0,0951	4,3677	4,8594	4,3670	4,0839±0,0983	3,9651	3,9492	3,9636	
276,4	10,4212±0,5210	10,5274	10,7956	10,5307	$10,9074 \pm 0,5342$	10,5793	10,7097	10,5854	
302,9	$10,4762\pm0,3098$	10,9535	11,1955	10,9590	10,5747±0,4703	11,0226	11,1248	11,0272	
356,0	12,1209±0,2786	11,7305	11,9153	11,7212	12,1844±0,5119	11,8345	11,8900	11,8433	
383,9	12,6495±0,6675	12,1160	12,2843	12,1016	12,4957±0,7093	12,2307	12,2555	12,2182	
511,0	12,7200±0,3320	13,7092	13,7635	13,7314	$14,4969\pm0,5493$	13,8634	13,8031	13,8812	
661,7	14,8878±0,3246	15,3909	15,3741	15,3984	15,5383±0,5201	15,5785	15,4235	15,5971	
1173,2	20,3092±0,5059	20,2801	20,2487	20,3025	20,2437±0,4571	20,5420	20,3394	20,5679	
1274,5	21,7516±0,5414	21,1520	21,0756	21,1276	20,7910±0,4499	21,4320	21,1546	21,4417	
1332,5	22,8210±0,5142	21,6402	21,5833	21,6481	22,4603±0,4830	21,9238	21,6646	21,9315	
Enerji		C20				C30			
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	$2,0250\pm0,0694$	1,9225	1,6902	1,9222	$1,8388 \pm 0,0555$	1,7400	1,4472	1,7388	
81,0	$3,5474{\pm}0,0703$	3,4910	3,2391	3,4898	3,2894±0,0391	3,2329	2,8588	3,2302	
276,4	10,0887±0,4297	10,0626	10,0710	10,3277	10,1252±0,6092	9,9024	9,8208	9,8982	
302,9	10,4037±0,5498	10,4976	10,4962	10,5065	$10,0404{\pm}0,5802$	10,3417	10,2568	10,3494	
356,0	11,5208±0,4032	11,2899	11,2401	11,2980	11,4257±0,3207	11,1381	11,0134	11,1409	
383,9	12,0156±0,2483	11,6748	11,6044	11,6690	11,6617±0,4554	11,5236	11,3600	11,5330	
511,0	13,7439±0,3704	13,2533	13,0726	13,2442	12,4792±0,3028	13,0984	12,8327	13,1188	
661,7	14,3750±0,4944	14,9038	14,6359	14,9173	14,3403±0,4117	14,7388	14,3797	14,7575	
1173,2	20,6807±0,2639	19,6665	19,3207	19,6715	$18,6770\pm0,5382$	19,4608	18,9769	19,4926	
1274,5	20,1596±0,3027	20,5184	20,1211	20,5317	21,6405±0,6188	20,3037	19,7634	20,3312	
1332,5	22,2116±0,4199	20,9889	20,5877	21,0130	21,2009±0,5092	20,7690	20,2360	20,7888	
Enerji		C40				C50			
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	$1,6155\pm0,0837$	1,5736	1,2604	1,5725	$1,4500\pm0,0397$	1,4127	1,0993	1,4110	
81,0	$3,0407{\pm}0,0690$	2,9744	2,5382	2,9720	$2,7744{\pm}0,0693$	2,7064	2,2481	2,7046	
276,4	9,8400±0,4492	9,5695	9,4235	9,5751	9,2419±0,4208	9,0682	8,8588	9,0650	
302,9	$9,7479\pm0,5493$	10,0034	9,8409	10,0108	9,8940±0,3072	9,4869	9,2747	9,4904	
356,0	$10,7314\pm0,5032$	10,7869	10,5980	10,7894	10,2713±0,2318	10,2408	9,9947	10,2393	
383,9	11,1437±0,4304	11,1650	10,9401	11,1723	10,5918±0,6441	10,6037	10,3370	10,5949	
511,0	12,3528±0,3992	12,7048	12,3682	12,7094	$11,7646\pm0,3052$	12,0778	11,7137	12,0839	
661,7	13,9502±0,4308	14,3036	13,8662	14,3092	13,2532±0,2897	13,6040	13,1339	13,6128	
1173,2	19,2880±0,4476	18,8962	18,3253	18,9114	18,2593±0,4247	17,9803	17,3552	17,9720	
1274,5	18,7929±0,3769	19,7145	19,0858	19,7606	19,2419±0,4811	18,7589	18,0765	18,7334	
1332,5	21,0669±0,4038	20,1660	19,5394	20,1995	18,3073±0,4086	19,1883	18,5175	19,1707	

Tablo 4. 21. Paslanmaz çelik alaşımı ile katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş OKD'leri (cm)

Enerji		SB	;			B50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	2,6196±0,0583	2,6065	2,4228	2,6052	$0,8599{\pm}0,0303$	0,8115	0,8771	0,8106
81,0	4,1963±0,0951	4,3677	4,8594	4,367	$1,7302{\pm}0,0416$	1,6597	1,8125	1,658
276,4	10,4212±0,5210	10,527	10,7956	10,5307	$7,9706\pm0,3865$	7,5543	7,8651	7,5585
302,9	10,4762±0,3098	10,954	11,1955	10,959	7,5114±0,2351	7,9660	8,2495	7,9684
356,0	12,1209±0,2786	11,731	11,9153	11,7212	8,7425±0,1993	8,6916	8,9296	8,7031
383,9	12,6495±0,6675	12,116	12,2843	12,1016	9,4867±0,4776	9,0343	9,2417	9,0368
511,0	12,7200±0,3320	13,7090	13,7635	13,7314	10,5638±0,2782	10,3910	10,4901	10,3927
661,7	14,8878±0,3246	15,3910	15,3741	15,3984	12,0053±0,2631	11,7610	11,7906	11,7605
1173,2	20,3092±0,5059	20,2800	20,2487	20,3025	15,6969±0,3639	15,6170	15,6251	15,6353
1274,5	21,7516±0,5414	21,1520	21,0756	21,1276	15,9298±0,4027	16,2960	16,2512	16,3107
1332,5	22,8210±0,5142	21,6400	21,5833	21,6481	16,7932±0,3785	16,6700	16,6435	16,6747
Enerji		B50B5	5			B50B1	0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$0,9373{\pm}0,0448$	0,924	0,9959	0,9231	$1,0205\pm0,0353$	0,9894	1,0675	0,9886
81,0	$1,9239{\pm}0,0589$	1,8814	2,0538	1,8803	$2,1051\pm0,0552$	2,0066	2,1893	2,0053
276,4	8,3207±0,4151	8,4002	8,7387	8,4032	8,7183±0,4761	8,7892	9,1302	8,799
302,9	8,3788±0,2755	8,8514	9,1563	8,8552	9,4900±0,3025	9,2631	9,5727	9,263
356,0	9,7505±0,2240	9,6459	9,9096	9,6592	9,6283±0,2183	10,0880	10,3500	10,0909
383,9	$10,0551\pm0,5035$	10,026	10,2496	10,0322	$10,6028 \pm 0,552$	10,4800	10,7117	10,4937
511,0	11,9529±0,3154	11,5260	11,6368	11,5246	12,3129±0,3157	12,0390	12,1396	12,0384
661,7	13,4165±0,2957	13,0400	13,0665	13,0483	$12,9369\pm0,2841$	13,6160	13,6852	13,6112
1173,2	17,5435±0,4096	17,312	17,2928	17,3287	$17,5945\pm0,4080$	18,0680	18,0569	18,0854
1274,5	$18,4482\pm0,4660$	18,055	18,0232	18,0921	18,9562±0,4750	18,8480	18,8190	18,8877
1332,5	19,2295±0,4352	18,474	18,4407	18,4862	19,9933±0,4514	19,2810	19,2580	19,3066
Enerji		B50B1	5			B50B2	0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$1,0688 \pm 0,0367$	1,0430	1,1247	1,1910	$1,0821\pm0,0431$	1,1330	1,2225	1,1318
81,0	$2,2239\pm0,0590$	2,1059	2,2951	2,3449	2,2175±0,0559	2,2778	2,4838	2,2766
276,4	9,3182±0,5062	9,0557	9,4049	9,1488	9,6841±0,5118	9,6272	9,9899	9,6320
302,9	9,7248±0,3036	9,5370	9,8530	9,6105	10,6909±0,3360	10,132	10,4595	10,1469
356,0	9,9388±0,2268	10,4090	10,6469	10,4193	10,9104±0,2461	11,072	11,2867	11,0345
383,9	$10,6664 \pm 0,6006$	10,7830	11,0227	10,8236	$11,2009\pm0,5774$	11,448	11,6878	11,4465
511,0	11,8595±0,3186	12,3800	12,4897	12,3717	12,7497±0,3259	13,135	13,2348	13,1446
661,7	14,1288±0,3096	13,9970	14,0377	13,9634	14,1125±0,3092	14,847	14,8663	14,8686
1173,2	18,4542±0,4266	18,5690	18,5250	18,4941	20,0816±0,4641	19,691	19,6898	19,7232
1274,5	20,2314±0,5098	19,3710	19,3354	19,3052	19,8848±0,4971	20,538	20,4969	20,5662
1332,5	19,0163±0,4291	19,8170	19,7805	19,7479	22,2030±0,5002	21,015	20,9836	21,0367

Tablo 4. 22. %50 bronz ve farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş OKD'leri (cm)

Enerji		SE	3			P50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	2,6196±0,0583	2,6065	2,4228	2,6052	1,1360±0,0296	1,0755	1,1747	1,0737
81,0	4,1963±0,0951	4,3677	4,8594	4,3670	2,1924±0,0563	2,1320	2,3531	2,1313
276,4	10,4212±0,5210	10,5274	10,7956	10,531	8,0140±0,3713	8,0654	8,3838	8,0666
302,9	10,4762±0,3098	10,9535	11,1955	10,959	8,7050±0,2759	8,4598	8,7405	8,4589
356,0	12,1209±0,2786	11,7305	11,9153	11,721	9,5824±0,2179	9,1644	9,4000	9,167
383,9	12,6495±0,6675	12,1160	12,2843	12,102	10,0913±0,6607	9,5013	9,6913	9,5074
511,0	12,7200±0,3320	13,7092	13,7635	13,731	11,4436±0,3036	10,8563	10,9634	10,8689
661,7	14,8878±0,3246	15,3909	15,3741	15,398	12,6497±0,2762	12,2472	12,2815	12,2494
1173,2	20,3092±0,5059	20,2801	20,2487	20,303	16,3517±0,3819	16,2109	16,2167	16,2233
1274,5	21,7516±0,5414	21,1520	21,0756	21,128	16,8952±0,4261	16,9133	16,8899	16,9573
1332,5	22,8210±0,5142	21,6402	21,5833	21,648	16,2826±0,3623	17,3004	17,2986	17,2961
Enerji		P50B5				P50B10)	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$1,1820\pm0,0352$	1,1592	1,2672	1,3628	1,2015±0,0379	1,2509	1,3661	1,2635
81,0	$2,2140\pm0,0598$	2,2885	2,5234	2,6001	2,4935±0,0629	2,4541	2,7078	2,4817
276,4	8,8980±0,4786	8,4773	8,8058	8,6779	9,4355±0,5102	8,9627	9,295	9,059
302,9	9,5614±0,3256	8,9439	9,2014	9,0822	9,2344±0,3046	9,3895	9,6802	9,5102
356,0	10,2759±0,2320	9,6523	9,8699	9,8079	9,7023±0,2168	10,1619	10,4053	10,2931
383,9	10,8688±0,6256	9,9988	10,1945	10,151	$10,6230\pm0,5762$	10,5313	10,7443	10,6699
511,0	12,2945±0,3199	11,4155	11,5165	11,555	$11,4451\pm0,3007$	12,0217	12,1053	12,186
661,7	13,5671±0,2971	12,8783	12,8923	13,021	12,8849±0,2811	13,5554	13,5798	13,7314
1173,2	19,3584±0,4472	17,0435	17,0286	17,228	$17,4134\pm0,4031$	17,9348	17,9081	18,1563
1274,5	18,4548±0,4616	17,7575	17,7088	17,947	$19,1523{\pm}0,4804$	18,7070	18,6617	18,9461
1332,5	18,8166±0,4230	18,1882	18,1449	18,369	19,8120±0,4435	19,1364	19,1008	19,3915
Enerji		P50B15	5			P50B20		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$1,3375\pm0,0341$	1,2992	1,4198	1,2972	1,4457±0,0346	1,3989	1,4922	1,3657
81,0	2,6114±0,0665	2,5363	2,7950	2,5349	2,6341±0,0790	2,7044	2,9232	2,6557
276,4	9,5078±0,4383	9,1071	9,4380	9,1146	9,4166±0,5137	9,3952	9,7201	9,3901
302,9	9,8713±0,3155	9,5420	9,8420	9,5507	9,6534±0,3102	9,8274	10,1284	9,847
356,0	9,9928±0,2232	10,319	10,5669	10,325	10,2241±0,2289	10,6292	10,8710	10,6338
383,9	10,9039±0,5722	10,6927	10,9074	10,695	$10,7680{\pm}0,6174$	11,0048	11,2204	11,025
511,0	12,5440±0,3263	12,2005	12,3078	12,206	12,9395±0,3410	12,5454	12,6573	12,5632
661,7	14,3254±0,3179	13,7541	13,7690	13,768	$13,8042\pm0,3012$	14,1357	14,1794	14,1681
1173,2	$17,5863\pm0,4088$	18,1951	18,1712	18,199	$19,0441\pm0,4488$	18,6918	18,6882	18,7577
1274,5	18,6132±0,4699	18,9794	18,9296	19,003	$18,5296\pm0,4668$	19,4969	19,4604	19,5226
1332,5	20,1440±0,4506	19,4119	19,3891	19,432	20,4907±0,4592	19,9447	19,9615	19,9796

Tablo 4. 23. %50 pirinç ve farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş OKD'leri (cm)

SB C50 Enerji (keV) **Teorik GEANT4 FLUKA** GEANT4 FLUKA Deneysel Deneysel Teorik $1,4500\pm0,0397$ 59,5 2,6196±0,0583 2,6065 2,4228 2,6052 1,4127 1,1993 1,4110 81,0 4,1963±0,0951 4,3677 4,8594 4,3670 2,7744±0,0693 2,7064 2,2481 2,7046 276,4 10,4212±0,5210 10,5274 10,7956 10,531 9,2419±0,4208 9,0682 8,8588 9,0650 302,9 10,4762±0,3098 10,9535 11,1955 10,959 9,8940±0,3072 9,4869 9,2747 9,4904 356,0 12,1209±0,2786 11,7305 11,9153 11,721 10,2713±0,2318 10,2408 9,9947 10,239 383,9 12,6495±0,6675 12,116 12,2843 12,102 10,5918±0,6441 10,6037 10,337 10,595 511,0 12,7200±0,3320 13,7092 13,7635 13,731 11,7646±0,3052 12,0778 11,7137 12,084 661,7 14,8878±0,3246 15,3909 15,3741 15,398 13,2532±0,2897 13,6040 13,1339 13,613 1173,2 20,2801 20,2487 20,303 17,9803 17,3552 20,3092±0,5059 18,2593±0,4247 17,972 1274,5 21,0756 19,2419±0,4811 18,0765 21,7516±0,5414 21,152 21,128 18,7589 18,733 1332,5 22,8210±0,5142 21,6402 21,5833 21,648 18,3073±0,4086 19,1883 18,5175 19,171 C50B5 C50B10 Enerji (keV) Deneysel Teorik GEANT4 FLUKA Deneysel Teorik GEANT4 FLUKA 59,5 1,4393±0,0374 1,4029 1,0915 1,4014 1,5734±0,0365 1,4929 1,1652 1,4931 81,0 $2,7496 \pm 0,0684$ 2,8288 2,6721 2,2241 2,6697 2,9170±0,0725 2,3630 2,8267 276,4 8,6820±0,4250 8,803 8,6226 8,8688±0,4070 8,9890 8,8083 9,1743 9,1772 302,9 9,2075 9,3902 9,0730±0,3155 9,0120 9,2045 9,1783±0,2808 9,5882 9,5956 9,9383 356,0 10,0811±0,2277 9,6949 9,9357 9,8619±0,2215 10,3507 10,1076 10,349 383,9 10,5583±0,5782 10,2852 10,0255 10,283 10,5965±0,5492 10,7084 10,4561 10,714 511,0 $12,0760\pm0,3161$ 11,7098 11,3516 12,8987±0,3354 12,1887 11,8319 11,718 12,193 661,7 13,8779±0,3020 13,1865 12,7409 13,188 14,0308±0,3066 13,7227 13,2718 13,737 1173,2 16,7973±0,3906 17,4283 16,8298 17,452 18,7477±0,4367 18,1313 17,5388 18,159 1274,5 18,5484±0,4660 18,1778 17,5265 18,216 19,4317±0,4850 18,9118 18,2623 18,931 1332,5 19,0115±0,4250 18,5927 17,9469 18,615 18,5664±0,4166 19,3439 18,6958 19,343 C50B15 C50B20 Enerji (keV) GEANT4 FLUKA GEANT4 Deneysel Teorik Deneysel Teorik FLUKA 59,5 1,6373±0,0379 1,7920±0,0410 1,5841 1,2375 1,5809 1,7044 1,3317 1,6976 81,0 3,0456±0,0754 2,9840 2,4957 2,9790 3,3036±0,0929 3,1919 2,6729 3,1821 276,4 9,1450±0,4966 9,5189 9,3317 9,5270 10,2217±0,5020 10,0196 9,8324 10,023 302,9 10,0467±0,3136 9,9495 9,7585 9,9596 10,0307±0,3349 10,4742 10,2744 10,483 $10,3903{\pm}0,2397$ 10,489 $10,8184{\pm}0,2439$ 356,0 10,7324 10,728 11,2896 11,0427 11,291 383.9 10,9816±0,5877 11,1017 10,8466 11,104 11,7485±0,5945 11,6764 11,4220 11,68 12,9335 511,0 12,7979±0,3344 12,6308 12,2599 12,6400 12,7683±0,3310 13,2803 13,283 661.7 14,8991±0,3257 14.2193 13,7467 14,2360 15,0578±0,3281 14.9453 14,4803 14.955 1173,2 19,5183±0,4536 18,7822 18,1669 18,7850 19,7365±0,4603 19,7419 19,1132 19,768 1274,5 19,8779±0,4971 18,9374 19,5970 21,6385±0,5404 19,5916 20,5900 19,9115 20,606 1332,5 20,8901±0,4682 20,0397 19,3927 20,0590 20,3736±0,4572 21,0615 20,3999 21,089

Tablo 4. 24. %50 paslanmaz çelik ve farklı oranlarda B₄C ile katkılandırılmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenmiş OKD'leri (cm)

Şekil 4.19. Bronz katkılanmış beton numunelerin OKD'lerinin enerjiye göre değişim grafiği

Şekil 4.20. Pirinç katkılanmış beton numunelerin OKD'lerinin enerjiye göre değişim grafiği

Şekil 4.21. Paslanmaz katkılanmış beton numunelerin OKD'lerinin enerjiye göre değişim grafiği

Şekil 4.22. %50 bronz ve farklı oranlarda B₄C katkılanmış beton numunelerin OKD'lerinin enerjiye göre değişim grafiği

Şekil 4.23. %50 pirinç ve farklı oranlarda B₄C katkılanmış beton numunelerin OKD'lerinin enerjiye göre değişim grafiği

Şekil 4.24. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılanmış beton numunelerin OKD'lerinin enerjiye göre değişim grafiği

Enerji			SB			B10	I	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	1,1377±0,0253	1,1320	1,0522	1,1314	0,7387±0,0164	0,7162	0,7862	0,7158
81,0	$1,8224\pm0,0413$	1,8969	2,1104	1,8966	$1,3239\pm0,0312$	1,3128	1,4490	1,3117
276,4	4,5259±0,2264	4,5720	4,6885	4,5734	$4,0338\pm0,1918$	3,9551	4,0767	3,9575
302,9	4,5497±0,1345	4,7570	4,8622	4,7594	$3,9518\pm0,1232$	4,1301	4,2388	4,1320
356,0	5,2641±0,1210	5,0945	5,1747	5,0904	$4,5438 \pm 0,1017$	4,4477	4,5312	4,4518
383,9	5,4936±0,2899	5,2619	5,3350	5,2557	$4,7527\pm0,2762$	4,6014	4,6727	4,6045
511,0	$5,5242\pm0,1442$	5,9538	5,9774	5,9635	$5,4212\pm0,1402$	5,2296	5,2570	5,2355
661,7	6,4657±0,1410	6,6842	6,6769	6,6874	$5,6809{\pm}0,1243$	5,8843	5,8798	5,8917
1173,2	8,8202±0,2197	8,8075	8,7939	8,8173	$8,1940{\pm}0,1912$	7,7687	7,7617	7,7767
1274,5	9,4466±0,2351	9,1862	9,1530	9,1756	$7,9850\pm0,2010$	8,1057	8,0839	8,1023
1332,5	9,9111±0,2233	9,3982	9,3735	9,4016	8,0928±0,1833	8,2918	8,2723	8,3055
Enerji		B20				B30		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,5957±0,0319	0,564	0,6146	0,5635	0,4751±0,0301	0,4615	0,5004	0,4610
81,0	$1,1168\pm0,0575$	1,0834	1,1907	1,0822	$0,9152{\pm}0,0545$	0,9126	0,9991	0,9122
276,4	3,5974±0,4555	3,7964	3,9226	3,8012	3,6579±0,4726	3,5704	3,7033	3,5770
302,9	3,8270±0,2852	3,9768	4,0934	3,976	3,9330±0,2959	3,7497	3,8670	3,7564
356,0	4,0543±0,2128	4,3003	4,3956	4,303	4,3979±0,2388	4,0688	4,1659	4,0741
383,9	4,4982±0,6077	4,4555	4,5371	4,4567	$4,0104\pm0,4883$	4,2209	4,3057	4,2278
511,0	5,3502±0,3116	5,0827	5,1240	5,0848	$5,1055\pm0,3006$	4,8303	4,8695	4,8330
661,7	$5,5703{\pm}0,2820$	5,7295	5,5392	5,7276	$5,5936 \pm 0,2823$	5,4535	5,4579	5,4572
1173,2	6,9663±0,3714	7,5777	7,5610	7,5854	$7,0601 \pm 0,3753$	7,2235	7,2170	7,2275
1274,5	8,4153±0,4847	7,9067	7,8837	7,9085	$7,8431\pm0,4539$	7,5374	7,5089	7,5447
1332,5	$8,2722\pm0,4282$	8,0881	8,0739	8,0978	$7,5265 \pm 0,3822$	7,7103	7,6931	7,7101
Enerji		B40				B50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,4269±0,0138	0,4065	0,4403	0,4065	0,3734±0,0131	0,3524	0,3809	0,3520
81,0	$0,7988 \pm 0,0193$	0,8196	0,8983	0,8192	$0,7514{\pm}0,0181$	0,7208	0,7872	0,7201
276,4	3,4862±0,1804	3,4890	3,6323	3,4908	3,4616±0,1678	3,2808	3,4158	3,2826
302,9	3,8045±0,1174	3,6722	3,8074	3,6759	3,2622±0,1021	3,4596	3,5827	3,4607
356,0	$3,8487 \pm 0,0872$	3,9966	4,1056	3,9998	$3,7968 \pm 0,0866$	3,7747	3,8781	3,7797
383,9	4,2211±0,2328	4,1503	4,2411	4,1473	4,1200±0,2074	3,9235	4,0136	3,9246
511,0	4,7823±0,1268	4,7624	4,8148	4,7603	4,5878±0,1208	4,5128	4,5558	4,5135
661,7	5,3555±0,1178	5,3841	5,4017	5,3863	5,2138±0,1142	5,1078	5,1206	5,1075
1173,2	6,8585±0,1602	7,1409	7,1420	7,1536	6,8171±0,1581	6,7822	6,7859	6,7903
1274,5	7,2795±0,1845	7,4513	7,4430	7,4489	6,9182±0,1749	7,0772	7,0578	7,0836
1332,5	7,3690±0,1668	7,6223	7,6202	7,6320	7,2932±0,1644	7,2395	7,2282	7,2417

Tablo 4. 25. Bronz katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenen OSY değerleri (cm)

Enerji		S	В		P10				
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	1,1377±0,0253	1,1320	1,0522	1,1314	0,7917±0,0179	0,7945	0,8784	0,794	
81,0	1,8224±0,0413	1,8969	2,1104	1,8966	$1,4605\pm0,0352$	1,4227	1,5787	1,4219	
276,4	4,5259±0,2264	4,5720	4,6885	4,5734	4,1718±0,2252	3,9682	4,087	3,9723	
302,9	4,5497±0,1345	4,7570	4,8622	4,7594	4,1872±0,1355	4,1374	4,2379	4,1364	
356,0	5,2641±0,1210	5,0945	5,1747	5,0904	$4,2424\pm0,0950$	4,4466	4,5251	4,4532	
383,9	5,4936±0,2899	5,2619	5,335	5,2557	4,6663±0,2353	4,5970	4,6654	4,5968	
511,0	5,5242±0,1442	5,9538	5,9774	5,9635	$5,1403{\pm}0,1313$	5,2151	5,2438	5,2181	
661,7	6,4657±0,1410	6,6842	6,6769	6,6874	5,7333±0,1247	5,8628	5,8634	5,8642	
1173,2	8,8202±0,2197	8,8075	8,7939	8,8173	7,4894±0,1736	7,7337	7,7309	7,7535	
1274,5	9,4466±0,2351	9,1862	9,1530	9,1756	$7,7908{\pm}0,1972$	8,0689	8,055	8,0789	
1332,5	9,9111±0,2233	9,3982	9,3735	9,4016	8,0127±0,1796	8,2540	8,2083	8,2589	
Enerji		P20			P30				
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	0,6844±0,0166	0,6530	0,7184	0,6525	0,5903±0,0137	0,5735	0,6288	0,5728	
81,0	$1,2630\pm0,0309$	1,2174	1,3483	1,2161	$1,1383{\pm}0,0279$	1,0987	1,2155	1,0981	
276,4	3,7477±0,2152	3,7770	3,9055	3,7760	3,7594±0,2265	3,6978	3,8277	3,7012	
302,9	3,9640±0,1267	3,9455	4,0546	3,9458	3,7416±0,1188	3,8688	3,9817	3,8693	
356,0	4,0419±0,0899	4,2508	4,3389	4,2518	4,0124±0,0899	4,1770	4,2685	4,1792	
383,9	4,4770±0,2288	4,3985	4,4756	4,3972	4,3972±0,2240	4,3254	4,4056	4,3193	
511,0	4,9903±0,1304	5,0011	5,0322	5,0035	5,1095±0,1355	4,9272	4,9614	4,9349	
661,7	5,8008±0,1276	5,6282	5,6322	5,6284	5,5514±0,1209	5,5502	5,5635	5,5551	
1173,2	7,3272±0,1700	7,4322	7,4284	7,4465	$6,9410\pm0,1622$	7,3358	7,3424	7,3421	
1274,5	7,3344±0,1849	7,7542	7,7352	7,7603	$7,\!4869{\pm}0,\!1878$	7,6537	7,6405	7,6574	
1332,5	7,6141±0,1713	7,9320	7,9192	7,9379	8,0005±0,1794	7,8291	7,8209	7,8494	
Enerji		P40				P50			
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	$0,5414 \pm 0,0147$	0,5158	0,5661	0,5158	$0,4934{\pm}0,0129$	0,4671	0,5101	0,4663	
81,0	$1,0440\pm0,0303$	1,0076	1,1167	1,0079	$0,9521 \pm 0,0245$	0,9259	1,0220	0,9256	
276,4	3,7574±0,2222	3,6173	3,7560	3,6195	$3,4804{\pm}0,1612$	3,5028	3,6411	3,5033	
302,9	3,7890±0,1122	3,7897	3,9145	3,7911	$3,7805{\pm}0,1198$	3,6740	3,7959	3,6737	
356,0	4,1316±0,0986	4,0990	4,2053	4,0962	4,1616±0,0946	3,9801	4,0824	3,9812	
383,9	4,3535±0,2418	4,2473	4,3425	4,2459	4,3826±0,2869	4,1264	4,2089	4,129	
511,0	5,0981±0,1339	4,8462	4,8910	4,8487	4,9699±0,1319	4,7148	4,7613	4,7203	
661,7	5,2151±0,1148	5,4633	5,4806	5,4639	5,4937±0,1199	5,3189	5,3338	5,3199	
1173,2	6,9799±0,1641	7,2265	7,2363	7,2306	7,1015±0,1658	7,0403	7,0428	7,0457	
1274,5	7,3399±0,1849	7,5396	7,5406	7,5402	7,3375±0,1850	7,3454	7,3352	7,3644	
1332,5	7,4491±0,1680	7,7122	7,7203	7,7184	7,0715±0,1577	7.5135	7,5127	7,5116	

Tablo 4. 26. Pirinç katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenen OSY değerleri (cm)

Enerji		S	В		C10			
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	1,1377±0,0253	1,1320	1,0522	1,1314	1,0368±0,0234	0,9793	0,9378	0,9789
81,0	$1,8224\pm0,0413$	1,8969	2,1104	1,8966	1,7736±0,0429	1,7220	1,7151	1,7214
276,4	4,5259±0,2264	4,5720	4,6885	4,5734	4,7370±0,2280	4,5945	4,6512	4,5972
302,9	4,5497±0,1345	4,7570	4,8622	4,7594	4,5925±0,1546	4,7870	4,8314	4,789
356,0	5,2641±0,1210	5,0945	5,1747	5,0904	5,2916±0,1183	5,1397	5,1638	5,1435
383,9	5,4936±0,2899	5,2619	5,3350	5,2557	5,4268±0,3125	5,3117	5,3225	5,3063
511,0	$5,5242\pm0,1442$	5,9538	5,9774	5,9635	6,2959±0,1613	6,0208	5,9946	6,0285
661,7	6,4657±0,1410	6,6842	6,6769	6,6874	$6,7482{\pm}0,1470$	6,7657	6,6983	6,7737
1173,2	8,8202±0,2197	8,8075	8,7939	8,8173	8,7917±0,2028	8,9213	8,8333	8,9325
1274,5	9,4466±0,2351	9,1862	9,1530	9,1756	9,0294±0,2274	9,3078	9,1873	9,312
1332,5	9,9111±0,2233	9,3982	9,3735	9,4016	9,7544±0,2179	9,5214	9,4088	9,5247
Enerji		C20				C30		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,8795±0,0194	0,8349	0,734	0,8348	$0,7986{\pm}0,0180$	0,7557	0,6285	0,7551
81,0	$1,5406\pm0,0405$	1,5161	1,4067	1,5156	$1,4286\pm0,0352$	1,4040	1,2416	1,4028
276,4	4,3815±0,2164	4,3701	4,3738	4,4852	4,3973±0,2315	4,3006	4,2651	4,2987
302,9	4,5183±0,1384	4,5591	4,5585	4,5629	4,3605±0,1393	4,4914	4,4545	4,4947
356,0	5,0034±0,1115	4,9031	4,8815	4,9067	4,9621±0,1138	4,8372	4,7831	4,8384
383,9	5,2183±0,2772	5,0703	5,0397	5,0678	$5,0646\pm0,2624$	5,0046	4,9336	5,0087
511,0	$5,9689 \pm 0,1551$	5,7558	5,6774	5,7519	$5,4196\pm0,1407$	5,6886	5,5732	5,6974
661,7	6,2430±0,1373	6,4726	6,3563	6,4785	6,2279±0,1363	6,4010	6,2450	6,4091
1173,2	8,9815±0,2076	8,5410	8,3909	8,5432	8,1113±0,1874	8,4517	8,2416	8,4655
1274,5	8,7552±0,2188	8,9110	8,7385	8,9168	9,3984±0,2337	8,8178	8,5831	8,8297
1332,5	9,6464±0,2163	9,1153	8,9411	9,1258	9,2074±0,2060	9,0198	8,7884	9,0285
Enerji		C40				C50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$0,7016\pm0,0185$	0,6834	0,5474	0,6829	0,6297±0,0172	0,6135	0,4774	0,6128
81,0	$1,3206\pm0,0330$	1,2918	1,1023	1,2907	1,2049±0,0301	1,1754	0,9763	1,1746
276,4	4,2735±0,1960	4,1560	4,0926	4,1584	4,0137±0,1828	3,9383	3,8473	3,9369
302,9	4,2335±0,1422	4,3444	4,2738	4,3476	4,2969±0,1334	4,1201	4,0279	4,1216
356,0	4,6606±0,1047	4,6847	4,6027	4,6858	$4,4607{\pm}0,1007$	4,4475	4,3406	4,4469
383,9	4,8396±0,2642	4,8489	4,7512	4,8521	4,6000±0,2797	4,6051	4,4893	4,6013
511,0	5,3647±0,1415	5,5176	5,3714	5,5196	5,1093±0,1325	5,2453	5,0872	5,2480
661,7	6,0585±0,1344	6,2120	6,0220	6,2144	5,7558±0,1258	5,9081	5,7040	5,9119
1173,2	8,3767±0,1945	8,2065	7,9586	8,2131	7,9299±0,1844	7,8087	7,5373	7,8051
1274,5	8,1616±0,2050	8,5619	8,2888	8,5819	8,3567±0,2089	8,1469	7,8505	8,1358
1332,5	9,1492±0,2049	8,7580	8,4858	8,7725	7,9507±0,1774	8,3334	8,0421	8,3257

Tablo 4. 27. Paslanmaz çelik katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenen OSY değerleri (cm)

Enerji	SB				B50			
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	1,1377±0,0253	1,1320	1,0522	1,1314	0,3734±0,0131	0,3524	0,3809	0,352
81,0	$1,8224\pm0,0413$	1,8969	2,1104	1,8966	$0,7514{\pm}0,0181$	0,7208	0,7872	0,7201
276,4	4,5259±0,2264	4,5720	4,6885	4,5734	3,4616±0,1678	3,2808	3,4158	3,2826
302,9	4,5497±0,1345	4,7570	4,8622	4,7594	3,2622±0,1021	3,4596	3,5827	3,4607
356,0	5,2641±0,1210	5,0945	5,1747	5,0904	$3,7968 \pm 0,0866$	3,7747	3,8781	3,7797
383,9	5,4936±0,2899	5,2619	5,3350	5,2557	4,1200±0,2074	3,9235	4,0136	3,9246
511,0	$5,5242\pm0,1442$	5,9538	5,9774	5,9635	4,5878±0,1208	4,5128	4,5558	4,5135
661,7	6,4657±0,1410	6,6842	6,6769	6,6874	5,2138±0,1142	5,1078	5,1206	5,1075
1173,2	8,8202±0,2197	8,8075	8,7939	8,8173	6,8171±0,1581	6,7822	6,7859	6,7903
1274,5	9,4466±0,2351	9,1862	9,1530	9,1756	6,9182±0,1749	7,0772	7,0578	7,0836
1332,5	9,9111±0,2233	9,3982	9,3735	9,4016	7,2932±0,1644	7,2395	7,2282	7,2417
Enerji		B50B10						
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$0,4071\pm0,0195$	0,4013	0,4325	0,4009	0,4432±0,0153	0,4297	0,4636	0,4293
81,0	$0,8355 \pm 0,0256$	0,8171	0,892	0,8166	$0,9142{\pm}0,0240$	0,8714	0,9508	0,8709
276,4	3,6136±0,1803	3,6482	3,7952	3,6495	$3,7863{\pm}0,2068$	3,8171	3,9652	3,8213
302,9	3,6389±0,1196	3,8441	3,9765	3,8458	4,1215±0,1314	4,0229	4,1574	4,0228
356,0	4,2346±0,0973	4,1891	4,3037	4,1949	4,1815±0,0948	4,3811	4,4950	4,3824
383,9	4,3669±0,2187	4,3544	4,4514	4,3569	4,6047±0,2399	4,5512	4,6520	4,5574
511,0	5,1911±0,1370	5,0057	5,0538	5,0051	$5,3474\pm0,1371$	5,2283	5,2721	5,2282
661,7	5,8267±0,1284	5,6632	5,6747	5,6668	$5,6184{\pm}0,1234$	5,9132	5,9434	5,9113
1173,2	7,6191±0,1779	7,5186	7,5102	7,5258	7,6412±0,1772	7,8470	7,8420	7,8544
1274,5	$8,0119{\pm}0,0202$	7,8413	7,8274	7,8573	8,2326±0,2063	8,1855	8,173	8,2028
1332,5	8,3513±0,1886	8,0229	8,0087	8,0285	8,6830±0,1960	8,3738	8,3636	8,3847
Enerji	B50B15				B50B20			
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$0,4642{\pm}0,0159$	0,4530	0,4885	0,5173	$0,4699{\pm}0,0187$	0,4921	0,5309	0,4915
81,0	$0,9658{\pm}0,0256$	0,9146	0,9968	1,0184	$0,9630{\pm}0,0243$	0,9892	1,0787	0,9887
276,4	4,0468±0,2198	3,9328	4,0845	3,9733	4,2057±0,2240	4,1810	4,3386	4,1831
302,9	4,2234±0,1319	4,1419	4,2791	4,1738	4,6430±0,1459	4,4001	4,5425	4,4068
356,0	4,3164±0,0985	4,5206	4,6239	4,5251	4,7383±0,1069	4,8084	4,9018	4,7922
383,9	4,6324±0,2608	4,6832	4,7871	4,7006	$4,8645\pm0,2508$	4,9718	5,0759	4,9712
511,0	$5,1505\pm0,1384$	5,3766	5,4242	5,3730	5,5371±0,1415	5,7043	5,7478	5,7086
661,7	6,1361±0,1344	6,0789	6,0965	6,0642	6,1290±0,1343	6,4481	6,4563	6,4573
1173,2	8,0145±0,1853	8,0644	8,0453	8,0319	8,7213±0,2016	8,5515	8,5512	8,5657
1274,5	8,7864±0,2214	8,4126	8,3972	8,3841	8,6359±0,2159	8,9195	8,9017	8,9318
1332,5	8,2587±0,1863	8,6063	8,5905	8,5764	9,6426±0,2172	9,1267	9,1130	9,1361

Tablo 4. 28. %50 bronz farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenen OSY değerleri (cm)

Enerji		SI	3		P50				
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	1,1377±0,0253	1,1320	1,0522	1,1314	0,4934±0,0129	0,4671	0,5101	0,4663	
81,0	1,8224±0,0413	1,8969	2,1104	1,8966	0,9521±0,0245	0,9259	1,0220	0,9256	
276,4	4,5259±0,2264	4,5720	4,6885	4,5734	3,4804±0,1612	3,5028	3,6411	3,5033	
302,9	4,5497±0,1345	4,7570	4,8622	4,7594	3,7805±0,1198	3,6740	3,7959	3,6737	
356,0	5,2641±0,1210	5,0945	5,1747	5,0904	4,1616±0,0946	3,9801	4,0824	3,9812	
383,9	5,4936±0,2899	5,2619	5,3350	5,2557	4,3826±0,2869	4,1264	4,2089	4,129	
511,0	$5,5242{\pm}0,1442$	5,9538	5,9774	5,9635	4,9699±0,1319	4,7148	4,7613	4,7203	
661,7	6,4657±0,1410	6,6842	6,6769	6,6874	5,4937±0,1199	5,3189	5,3338	5,3199	
1173,2	8,8202±0,2197	8,8075	8,7939	8,8173	7,1015±0,1658	7,0403	7,0428	7,0457	
1274,5	9,4466±0,2351	9,1862	9,153	9,1756	7,3375±0,1850	7,3454	7,3352	7,3644	
1332,5	9,9111±0,2233	9,3982	9,3735	9,4016	7,0715±0,1577	7,5135	7,5127	7,5116	
Enerji		P50B5	;		P50B10				
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	0,5133±0,0153	0,5034	0,5503	0,5919	0,5218±0,0165	0,5432	0,5933	0,5487	
81,0	$0,9615 \pm 0,0260$	0,9939	1,0959	1,1292	1,0829±0,0273	1,0658	1,1760	1,0778	
276,4	$3,8643 \pm 0,2079$	3,6816	3,8243	3,7688	4,0978±0,2216	3,8924	4,0368	3,9343	
302,9	4,1525±0,1414	3,8843	3,9961	3,9443	4,0105±0,1323	4,0778	4,2041	4,1302	
356,0	$4,4628 \pm 0,1007$	4,1920	4,2864	4,2595	4,2137±0,0942	4,4132	4,5190	4,4702	
383,9	4,7203±0,1389	4,3424	4,4274	4,4085	4,6135±0,2502	4,5737	4,6662	4,6339	
511,0	5,3394±0,2717	4,9577	5,0016	5,0181	4,9705±0,1306	5,2210	5,2573	5,2923	
661,7	5,8921±0,1290	5,5930	5,5990	5,6551	5,5958±0,1221	5,8870	5,8976	5,9635	
1173,2	$8,4072\pm0,1942$	7,4019	7,3954	7,4821	7,5625±0,1751	7,7890	7,7774	7,8852	
1274,5	8,0148±0,2005	7,7120	7,6908	7,7941	8,3177±0,2086	8,1243	8,1047	8,2282	
1332,5	8,1720±0,1837	7,8990	7,8802	7,9777	8,6042±0,1926	8,3109	8,2954	8,4216	
Enerji	P50B15				P50B20				
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA	
59,5	$0,5809{\pm}0,0148$	0,5642	0,6166	0,5633	0,6279±0,0150	0,6076	0,6481	0,5931	
81,0	$1,1341\pm0,0289$	1,1015	1,2138	1,1009	$1,1440\pm0,0343$	1,1745	1,2695	1,1534	
276,4	$4,1292{\pm}0,1903$	3,9552	4,0989	3,9584	4,0896±0,2231	4,0803	4,2214	4,0781	
302,9	4,2870±0,1370	4,1440	4,2743	4,1478	4,1924±0,1347	4,268	4,3987	4,2765	
356,0	4,3398±0,0969	4,4815	4,5892	4,484	4,4403±0,0954	4,6162	4,7212	4,6182	
383,9	4,7355±0,2485	4,6438	4,7370	4,6449	4,6765±0,2681	4,7793	4,8730	4,7881	
511,0	$5,4478 \pm 0,1417$	5,2986	5,3452	5,3008	$5,6196\pm0,1481$	5,4484	5,4970	5,4561	
661,7	6,2215±0,1381	5,9733	5,9798	5,9792	5,9951±0,1308	6,1391	6,1581	6,1531	
1173,2	7,6376±0,1776	7,9020	7,8916	7,9038	8,2708±0,1949	8,1178	8,1162	8,1464	
1274,5	8,0836±0,2041	8,2426	8,2210	8,2529	8,0473±0,2027	8,4674	8,4515	8,4785	
1332,5	8.7484 ± 0.1957	8,4305	8,4206	8,4392	8,8990±0,1984	8,6619	8,6691	8,677	

Tablo 4. 29. %50 pirinç farklı oranlarda $B_4C\;$ katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenen OSY değerleri (cm)
Enerji		S	В			C50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	1,1377±0,0253	1,1320	1,0522	1,1314	0,6297±0,0172	0,6135	0,4774	0,6128
81,0	1,8224±0,0413	1,8969	2,1104	1,8966	1,2049±0,0301	1,1754	0,9763	1,1746
276,4	4,5259±0,2264	4,5720	4,6885	4,5734	4,0137±0,1828	3,9383	3,8473	3,9369
302,9	4,5497±0,1345	4,7570	4,8622	4,7594	4,2969±0,1334	4,1201	4,0279	4,1216
356,0	5,2641±0,1210	5,0945	5,1747	5,0904	4,4607±0,1007	4,4475	4,3406	4,4469
383,9	5,4936±0,2899	5,2619	5,3350	5,2557	4,6000±0,2797	4,6051	4,4893	4,6013
511,0	5,5242±0,1442	5,9538	5,9774	5,9635	5,1093±0,1325	5,2453	5,0872	5,248
661,7	6,4657±0,1410	6,6842	6,6769	6,6874	5,7558±0,1258	5,9081	5,7040	5,9119
1173,2	8,8202±0,2197	8,8075	8,7939	8,8173	7,9299±0,1844	7,8087	7,5373	7,8051
1274,5	9,4466±0,2351	9,1862	9,1530	9,1756	8,3567±0,2089	8,1469	7,8505	8,1358
1332,5	9,9111±0,2233	9,3982	9,3735	9,4016	7,9507±0,1774	8,3334	8,0421	8,3257
Enerji		C50B5	;			C50B10		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,6251±0,01062	0,6093	0,4741	0,6086	0,6833±0,0158	0,6483	0,506	0,6485
81,0	$1,1941\pm0,0297$	1,1605	0,9659	1,1594	1,2669±0,0315	1,2285	1,0262	1,2276
276,4	3,7705±0,1846	3,8231	3,7448	3,8254	3,8517±0,1767	3,9843	3,9039	3,9856
302,9	$3,9404{\pm}0,1370$	3,9988	3,9139	3,9975	3,9861±0,1219	4,1641	4,0781	4,1673
356,0	4,3782±0,0989	4,3161	4,2105	4,315	4,2830±0,0962	4,4953	4,3897	4,4945
383,9	4,5854±0,2511	4,4668	4,3540	4,4657	4,6020±0,2385	4,6506	4,541	4,6532
511,0	5,2445±0,1373	5,0855	4,9299	5,0892	$5,6018 \pm 0,1457$	5,2935	5,1385	5,2951
661,7	6,0271±0,1312	5,7268	5,5333	5,7276	6,0935±0,1332	5,9597	5,7639	5,9658
1173,2	7,2950±0,1696	7,5690	7,3091	7,5793	8,1420±0,1896	7,8743	7,6170	7,8862
1274,5	8,0555±0,2024	7,8945	7,6116	7,9112	8,4391±0,2106	8,2133	7,9312	8,2218
1332,5	8,2566±0,1846	8,0747	7,7942	8,0843	8,0633±0,1809	8,4009	8,1195	8,4005
Enerji		C50B1	5			C50B20		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	0,7111±0,0165	0,6880	0,5374	0,6866	0,7782±0,0178	0,7402	0,5784	0,7372
81,0	$1,3227\pm0,0328$	1,2960	1,0839	1,2937	$1,4347\pm0,0403$	1,3862	1,1608	1,382
276,4	3,9716±0,2157	4,1340	4,0527	4,1375	4,4392±0,2180	4,3515	4,2701	4,353
302,9	4,3632±0,1362	4,3210	4,2381	4,3254	4,3563±0,1454	4,5489	4,4621	4,5528
356,0	4,5124±0,1041	4,6610	4,5553	4,6590	4,6984±0,1059	4,9030	4,7958	4,9035
383,9	$4,7692 \pm 0,2552$	4,8214	4,7106	4,8223	5,1023±0,2582	5,0710	4,9605	5,0725
511,0	5,5580±0,1462	5,4855	5,3244	5,4896	5,5452±0,1437	5,7675	5,6169	5,7685
661,7	6,4706±0,1414	6,1753	5,9701	6,1827	6,5395±0,1425	6,4907	6,2887	6,4948
1173,2	8,4767±0,1970	8,1570	7,8898	8,1582	8,5715±0,1999	8,5738	8,3007	8,5852
1274,5	8,6329±0,2159	8,5085	8,2244	8,5106	9,3975±0,2347	8,9421	8,6475	8,949
1332,5	9,0725±0,2034	8,7031	8,4221	8,7117	8,8482±0,1985	9,1469	8,8596	9,159

Tablo 4. 30. %50 paslanmaz çelik farklı oranlarda B₄C katkılanmış beton numunelerin deneysel, teorik, GEANT4 ve FLUKA ile belirlenen OSY değerleri (cm)

Şekil 4.25. Bronz katkılanmış beton numunelerin ortalama serbest yol değerlerinin enerjiye göre değişim grafiği

Şekil 4.26. Pirinç katkılanmış beton numunelerin ortalama serbest yol değerlerinin enerjiye göre değişim grafiği

Şekil 4.27. Paslanmaz çelik katkılanmış beton numunelerin ortalama serbest yol değerlerinin enerjiye göre değişim grafiği

Şekil 4.28. %50 bronz ve farklı oranlarda B₄C katkılanmış beton numunelerin ortalama serbest yol değerlerinin enerjiye göre değişim grafiği

Şekil 4.29. %50 pirinç ve farklı oranlarda B₄C ile katkılandırılmış beton numunelerin ortalama serbest yol değerlerinin enerjiye göre değişim grafiği

Şekil 4.30. %50 paslanmaz çelik ve farklı oranlarda B₄C ile katkılandırılmış beton numunelerin ortalama serbest yol değerlerinin enerjiye göre değişim grafiği

4.4. Etkin Atom Numarası Parametresine Ait Araştırma Bulguları

Çalışılan bir malzeme, içerisinde iki veya daha fazla element ihtiva ediyorsa malzemenin atom numarası ifadesi yerine etkin atom numarası terimi kullanılmaktadır. Kütle azaltma katsayıları yardımı ile numunenin atomik (2.26) ve elektronik (2.27) tesir kesitleri belirlenmiştir. Atomik ve elektronik tesir kesitinin belirlenmesi ile numunelerin etkin atom numaraları, eşitlik (2.28) kullanılarak teorik olarak belirlenmiştir. Elde edilen Z_{etk} değerleri teorik ve simülasyon çalışmaları sonucunda elde edilen sonuçlar ile karşılaştırılmıştır.

Farklı oranlarda bronz, pirinç, paslanmaz çelik veya B_4C ile katkılanmış beton numunelerin etkin atom numarası Tablo 2.1'de verilen on bir farklı foton enerjisinde belirlenmiştir.

Üretilen beton numunelerin Z_{etk} değerleri Tablo 4.30-4.36'da ve elde edilen veriler yardımı ile çizilen grafikle Şekil 4.30-4.36'da sunulmuştur.

Enerji			SB			B10		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	15,7775±0,3511	15,8570	18,9874	15,8928	18,9367±0,4195	19,5318	19,4980	19,6501
81,0	15,1995±0,3443	14,6031	14,3789	14,5589	17,3265±0,4080	17,4737	17,0695	17,4537
276,4	12,7318±0,6369	12,6035	12,5606	12,6035	13,1715±0,4262	13,4336	13,3426	13,4293
302,9	13,1476±0,3888	12,5747	12,5336	12,5724	13,9500±0,4351	13,3476	13,2957	13,3454
356,0	12,1473±0,2792	12,5516	12,5180	12,5616	13,0197±0,2915	13,3010	13,2431	13,2888
383,9	11,9988±0,6332	12,5270	12,4841	12,5464	12,8404±0,7463	13,2624	13,2109	13,2578
511,0	13,4816±0,3519	12,5088	12,4997	12,4900	12,7397±0,3294	13,2063	13,1887	13,1913
661,7	13,3581±0,2913	12,9214	12,4694	12,9107	$14,0928\pm0,3084$	13,6055	13,1483	13,5841
1173,2	12,4643±0,3105	12,4822	12,4698	12,4777	12,4619±0,2908	13,1440	13,1253	13,1403
1274,5	12,1372±0,3021	12,4813	12,4884	12,5017	13,3371±0,3358	13,1384	13,1347	13,1501
1332,5	11,8257±0,2664	12,4710	12,4934	12,4859	13,4523±0,3048	13,1294	13,1501	13,1281
Enerji		B20				B30		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	20,8536±0,4853	22,0275	21,9193	22,2222	23,1528±0,6356	23,8332	23,6613	24,0943
81,0	19,0493±0,4258	19,6373	19,0403	19,6390	21,2649±0,5497	21,3264	20,5695	21,3307
276,4	14,9790±0,6237	14,1935	14,0899	14,1787	14,5370±0,8157	14,8932	14,7447	14,8695
302,9	14,6022±0,4725	14,0522	14,0018	14,0579	$14,0154\pm0,4580$	14,7005	14,6634	14,6778
356,0	$14,8441\pm0,3384$	13,9950	13,9053	13,9872	13,5427±0,3194	14,6381	14,5360	14,6198
383,9	13,8092±0,8102	13,9416	13,8621	13,9441	15,3394±0,8111	14,5745	14,4813	14,5545
511,0	13,1582±0,3329	13,8507	13,8094	13,8442	13,6768±0,3497	14,4559	14,4126	14,4445
661,7	14,6468±0,3220	14,2397	14,2455	14,2401	14,4596±0,3169	14,8310	14,3548	14,8171
1173,2	14,9760±0,3467	13,7676	13,7592	13,7582	14,6651±0,3386	14,3332	14,3182	14,3359
1274,5	12,9254±0,3233	13,7569	13,7519	13,7527	$13,7681\pm0,3460$	14,3266	14,3403	14,3188
1332,5	13,4407±0,3021	13,7466	13,7624	13,7477	14,6671±0,3234	14,3175	14,3400	14,3399
Enerji		B40				B50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	23,9928±0,8903	25,2004	24,8989	25,4802	$24,7944\pm0,3724$	26,2715	25,9031	26,6221
81,0	23,2711±0,5623	22,6817	21,6963	22,7028	$22,8231\pm0,5483$	23,7933	22,7077	23,8393
276,4	15,5520±0,8047	15,5398	15,3489	15,5357	15,2961±0,7416	16,1390	15,9598	16,1336
302,9	14,7673±0,4507	15,2990	15,2210	15,2873	16,8126±0,5263	15,8532	15,8314	15,8518
356,0	15,8211±0,3587	15,2356	15,0945	15,2239	$15,7002\pm0,3580$	15,7921	15,6593	15,7723
383,9	14,9076±0,8223	15,1618	15,0519	15,1765	$14,9602\pm0,7532$	15,7094	15,5920	15,7085
511,0	14,9553±0,3965	15,0176	14,9380	15,0192	15,2886±0,4026	15,5428	15,4906	15,5335
661,7	15,4635±0,3401	15,3813	14,8720	15,3711	15,5721±0,3412	15,8954	15,4012	15,8926
1173,2	15,4824±0,3617	14,8700	14,8413	14,8545	15,2945±0,3546	15,3732	15,3398	15,3660
1274,5	15,2137±0,3857	14,8629	14,8385	14,8741	15,7186±0,3973	15,3656	15,3661	15,3578
1332,5	15,3644±0,3478	14,8539	14,8486	14,8577	15,2436±0,3435	15,3566	15,3717	15,3753

Tablo 4. 31. Bronz katkılı beton numunelerin karşılaştırmalı Z_{etk} değerleri

Enerji		S	B			P10		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	15,7775±0,3511	15,8570	18,9874	15,8928	18,1398±0,4095	18,0753	18,0658	18,1625
81,0	15,1995±0,3443	14,6031	14,3789	14,5589	15,9753±0,3848	16,3999	16,1970	16,3627
276,4	12,7318±0,6369	12,6035	12,5606	12,6035	12,6792±0,6844	13,3298	13,2531	13,3195
302,9	13,1476±0,3888	12,5747	12,5336	12,5724	13,1074±0,4242	13,2649	13,2339	13,2716
356,0	12,1473±0,2792	12,5516	12,5180	12,5616	13,8716±0,3108	13,2346	13,1911	13,2159
383,9	11,9988±0,6332	12,5270	12,4841	12,5464	13,0060±0,6558	13,2021	13,1566	13,2113
511,0	13,4816±0,3519	12,5088	12,4997	12,4900	13,3553±0,3412	13,1636	13,1502	13,1575
661,7	13,3581±0,2913	12,9214	12,4694	12,9107	13,8786±0,3019	13,5721	13,1048	13,5649
1173,2	12,4643±0,3105	12,4822	12,4698	12,4777	13,5584±0,3143	13,1300	13,0954	13,1018
1274,5	12,1372±0,3021	12,4813	12,4884	12,5017	13,5891±0,3440	13,1208	13,0995	13,1040
1332,5	11,8257±0,2664	12,4710	12,4934	12,4859	13,5051±0,3027	13,1103	13,1743	13,1195
Enerji		P20				P30		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	18,7579±0,4546	19,6608	19,6453	19,7911	20,2587±0,4717	20,8507	20,8264	21,0274
81,0	17,1626±0,4198	17,8053	17,6257	17,7797	$18,2750\pm0,4474$	18,9346	18,7687	18,9011
276,4	14,1031±0,8096	13,9938	13,8791	14,0012	14,3653±0,8654	14,6048	14,4897	14,5954
302,9	13,8283±0,4420	13,8931	13,8540	13,8953	14,9626±0,4749	14,4706	14,4465	14,4727
356,0	14,5826±0,3242	13,8659	13,7946	13,8645	15,0423±0,3370	14,4495	14,3737	14,4444
383,9	13,5845±0,6942	13,8269	13,7570	13,8422	$14,1698\pm0,7219$	14,4050	14,3308	14,4390
511,0	13,8016±0,3607	13,7718	13,7555	13,7657	13,8244±0,3612	14,3358	14,3160	14,3128
661,7	13,7530±0,3025	14,1747	13,7010	14,1706	14,7297±0,3208	14,7328	14,2386	14,7165
1173,2	13,9193±0,3229	13,7227	13,6909	13,7019	15,0853±0,3525	14,2735	14,2227	14,2718
1274,5	14,4981±0,3654	13,7130	13,7021	13,7018	14,5812±0,3658	14,2634	14,2428	14,2574
1332,5	14,2750±0,3211	13,7028	13,7161	13,7109	13,9481±0,3128	14,2536	14,2595	14,2398
Enerji		P40				P50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$20,7501\pm0,5634$	21,7766	21,6664	21,9570	21,3176±0,5553	22,5177	22,4564	22,7601
81,0	$19,\!1703{\pm}0,\!5561$	19,8620	19,6595	19,8164	$20,0684 \pm 0,5158$	20,6371	20,5148	20,6053
276,4	14,6033±0,8636	15,1690	15,0220	15,1639	15,7920±0,7316	15,6914	15,5410	15,6934
302,9	15,0062±0,4444	15,0034	14,9599	15,0019	15,0599±0,4774	15,4963	15,4824	15,5020
356,0	14,8722±0,3371	14,9905	14,8677	15,0041	14,8177±0,3369	15,4935	15,3838	15,4930
383,9	14,5770±0,8096	14,9414	14,8205	14,9622	14,5379±0,9519	15,4406	15,3642	15,4490
511,0	14,1260±0,3709	14,8603	14,8126	14,8505	14,5615±0,3863	15,3492	15,2977	15,3285
661,7	15,9768±0,3517	15,2512	14,7489	15,2462	15,2333±0,3326	15,7340	15,2418	15,7282
1173,2	15,3090±0,3598	14,7867	14,7296	14,7890	15,1345±0,3564	15,2660	15,2246	15,2654
1274,5	15,1782±0,3823	14,7762	14,7284	14,7760	15,2715±0,3851	15,2551	15,2300	15,2166
1332,5	15,2884±0,3447	14,7667	14,7426	14,7794	16,1990±0,3613	15,2461	15,2389	15,2753

Tablo 4. 32. Pirinç katkılı beton numunelerin karşılaştırmalı Z_{etk} değerleri

Enerii		S	B			C10		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	15,7775±0,3511	15,8570	18,9874	15,8928	16,3474±0,3097	17,3082	20,1387	17,4393
81,0	15,1995±0,3443	14,6031	14,3789	14,5589	15,4366±0,3734	15,8994	17,4935	15,8564
276,4	12,7318±0,6369	12,6035	12,5606	12,6035	12,7578±0,6139	13,1534	13,3897	13,2409
302,9	13,1476±0,3888	12,5747	12,5336	12,5724	13,7662±0,4685	13,2068	13,3482	13,2055
356,0	12,1473±0,2792	12,5516	12,5180	12,5616	12,7901±0,2858	13,1682	13,2870	13,1544
383,9	11,9988±0,6332	12,5270	12,4841	12,5464	12,8575±0,7404	13,1361	13,2579	13,1540
511,0	13,4816±0,3519	12,5088	12,4997	12,4900	12,5331±0,3211	13,1058	13,2125	13,0909
661,7	13,3581±0,2913	12,9214	12,4694	12,9107	13,4785±0,2927	13,4438	13,1809	13,4919
1173,2	12,4643±0,3105	12,4822	12,4698	12,4777	13,2611±0,3059	13,0686	13,1667	13,0667
1274,5	12,1372±0,3021	12,4813	12,4884	12,5017	13,4663±0,3391	13,0635	13,1956	13,0651
1332,5	11,8257±0,2664	12,4710	12,4934	12,4859	12,7428±0,2846	13,0546	13,1997	13,0741
Enerji		C20				C30		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	17,4541±0,3847	18,3846	23,3202	18,5947	18,1824±0,4102	19,2151	25,7795	19,5058
81,0	16,6734±0,4378	16,9425	20,0169	16,8986	17,4944±0,4065	17,8000	22,0707	17,7640
276,4	13,6100±0,6721	13,6454	14,1559	13,4747	13,7796±0,4612	14,0896	14,8518	14,3668
302,9	13,9033±0,4258	13,7789	14,0741	13,7715	14,7315±0,4236	14,3023	14,7436	14,2961
356,0	13,4584±0,2998	13,7336	13,9932	13,7155	13,8936±0,3724	14,2523	14,6300	14,2364
383,9	13,3049±0,7067	13,6933	13,9437	13,7044	14,0363±0,5029	14,2046	14,5952	14,1974
511,0	13,1651±0,3420	13,6525	13,9000	13,6643	$14,8574\pm0,3628$	14,1550	14,5158	14,1359
661,7	14,4293±0,3173	13,9174	13,8441	14,0362	14,7469±0,3374	14,3481	14,4495	14,5269
1173,2	12,9383±0,2990	13,6056	13,8169	13,6172	14,6917±0,2935	14,1000	14,4274	14,0925
1274,5	13,8426±0,3460	13,6005	13,8290	13,5993	13,2241±0,3138	14,0948	14,4394	14,0835
1332,5	12,8434±0,2880	13,5916	13,8449	13,6007	13,7990±0,3760	14,0860	14,4449	14,0978
Enerji		C40				C50		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	$19,3588 \pm 0,4305$	19,8753	23,7038	20,2256	19,8887±0,5547	20,4127	23,2997	20,8260
81,0	$18,1134\pm0,4102$	18,5173	23,7973	18,4806	18,6578±0,4662	19,1263	21,2550	19,0866
276,4	14,0943±0,3892	14,4927	15,4818	14,8392	14,5808±0,6639	14,8601	16,0935	15,3019
302,9	$15,\!1704{\pm}0,\!3467$	14,7830	15,3789	14,7765	14,5997±0,4532	15,2261	15,9539	15,2251
356,0	14,8059±0,4835	14,7298	15,2256	14,7101	15,1259±0,3413	15,1708	15,7944	15,1530
383,9	14,7033±0,3342	14,6753	15,1808	14,6700	15,1272±0,9199	15,1102	15,7212	15,1272
511,0	15,0350±0,2967	14,6183	15,0928	14,6166	15,4475±0,4007	15,0469	15,5997	15,0433
661,7	15,1149±0,2420	14,7415	15,0205	14,9965	15,5018±0,3389	15,1021	15,5273	15,4145
1173,2	14,2607±0,2318	14,5565	14,9779	14,5608	14,7505±0,3431	14,9794	15,4871	15,0027
1274,5	15,2650±0,1997	14,5513	14,9893	14,5253	14,5983±0,3650	14,9742	15,4977	15,0027
1332,5	13,9207±0,2102	14,5426	14,9964	14,5442	15,6857±0,3501	14,9655	15,4946	15,0055

Tablo 4. 33. Paslanmaz çelik katkılı beton numunelerin karşılaştırmalı Z_{etk} değerleri

En aut		SR	2			B 50		
enerji (keV)	Denevsel	Teorik	GEANT4	FLUKA	Denevsel	Teorik	GEANT4	FLUKA
59.5	15.7775±0.3511	15.8570	18.9874	15.8928	24,7944±0,3724	26.2715	25.9031	26.6221
81,0	15,1995±0,3443	14,6031	14,3789	14,5589	22,8231±0,5483	23,7933	22,7077	23,8393
276,4	12,7318±0,6369	12,6035	12,5606	12,6035	15,2961±0,7416	16,1390	15,9598	16,1336
302,9	13,1476±0,3888	12,5747	12,5336	12,5724	16,8126±0,5263	15,8532	15,8314	15,8518
356,0	12,1473±0,2792	12,5516	12,5180	12,5616	15,7002±0,3580	15,7921	15,6593	15,7723
383,9	11,9988±0,6332	12,5270	12,4841	12,5464	14,9602±0,7532	15,7094	15,5920	15,7085
511,0	13,4816±0,3519	12,5088	12,4997	12,4900	15,2886±0,4026	15,5428	15,4906	15,5335
661,7	13,3581±0,2913	12,9214	12,4694	12,9107	15,5721±0,3412	15,8954	15,4012	15,8926
1173,2	12,4643±0,3105	12,4822	12,4698	12,4777	15,2945±0,3546	15,3732	15,3398	15,3660
1274,5	12,1372±0,3021	12,4813	12,4884	12,5017	15,7186±0,3973	15,3656	15,3661	15,3578
1332,5	11,8257±0,2664	12,4710	12,4934	12,4859	15,2436±0,3435	15,3566	15,3717	15,3753
Enerji		B50B5	5			B50B1	0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	25,3951±0,9421	25,7602	25,4513	26,1069	24,5131±0,8478	25,2826	24,9385	25,6258
81,0	22,5293±0,6897	23,0371	21,9824	23,0944	21,2957±0,5581	22,3411	21,3180	22,4170
276,4	15,3736±0,7669	15,2281	15,0435	15,2565	14,5832±0,7964	14,4654	14,2887	14,5061
302,9	15,8114±0,5199	14,9671	14,9265	14,9941	13,8731±0,4422	14,2130	14,1592	14,2692
356,0	14,7399±0,3386	14,8998	14,7553	14,9104	14,8108±0,3358	14,1360	14,0014	14,1856
383,9	14,7740±0,7398	14,8164	14,6989	14,8409	13,8977±0,7240	14,0611	13,9379	14,0975
511,0	14,1277±0,3728	14,6510	14,5889	14,6783	13,5915±0,3485	13,9012	13,8497	13,9509
661,7	14,5259±0,3202	14,9452	14,5183	14,9659	14,8916±0,3271	14,1492	13,7274	14,2092
1173,2	14,2937±0,3337	14,4847	14,4747	14,5153	14,1120±0,3272	13,7419	13,7236	13,7943
1274,5	14,1777±0,3581	14,4863	14,4709	14,4939	13,6624±0,3423	13,7409	13,7217	13,7714
1332,5	13,9064±0,3140	14,4755	14,4891	14,5205	13,2447±0,2990	13,7337	13,7360	13,7914
Enerji		B50B1	5			B50B2	0	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	24,2103±0,8319	24,8100	24,4689	22,0075	25,5139±1,0168	24,3664	24,0036	24,7163
81,0	20,5410±0,5447	21,6928	20,7121	19,5510	21,6713±0,5467	21,0979	20,1249	21,1999
276,4	13,4195±0,7289	13,8085	13,6247	13,7415	$13,\!1584\pm\!0,\!7008$	13,2361	13,0560	13,3175
302,9	13,3135±0,4156	13,5756	13,5042	13,5448	12,3398±0,3878	13,0210	12,9424	13,0883
356,0	14,0909±0,3215	13,4542	13,3542	13,5121	13,0640±0,2947	12,8735	12,8101	13,0019
383,9	$13,5638\pm0,7637$	13,4166	13,2877	13,4391	13,1430±0,6775	12,8592	12,7423	12,9468
511,0	13,8439±0,3719	13,2619	13,1991	13,3389	13,0943±0,3347	12,7104	12,6595	12,7833
661,7	13,3485±0,2925	13,4741	13,1212	13,5813	13,5641±0,2972	12,8928	12,5919	12,9634
1173,2	13,1901±0,3049	13,1087	13,1121	13,2434	12,3175±0,2847	12,5622	12,5349	12,6350
1274,5	12,5500±0,3162	13,1076	13,0919	13,2289	12,9760±0,3244	12,5634	12,5495	12,6355
1332,5	13,6525±0,3080	13,1011	13,1089	13,2383	11,8833±0,2677	12,5551	12,5564	12,6453

Tablo 4. 34. %50 bronz ve farklı oranlarda B_4C katkılı beton numunelerin karşılaştırmalı Z $_{etk}$ değerleri

Fnorii		SF	}			P50		
(keV)	Denevsel	Teorik	GEANT4	FLUKA	Denevsel	Teorik	GEANT4	FLUKA
59,5	15,7775±0,3511	15,8570	18,9874	15,8928	21,3176±0,5553	22,5177	22,4564	22,7601
81,0	15,1995±0,3443	14,6031	14,3789	14,5589	20,0684±0,5158	20,6371	20,5148	20,6053
276,4	12,7318±0,6369	12,6035	12,5606	12,6035	15,7920±0,7316	15,6914	15,5410	15,6934
302,9	13,1476±0,3888	12,5747	12,5336	12,5724	15,0599±0,4774	15,4963	15,4824	15,5020
356,0	12,1473±0,2792	12,5516	12,5180	12,5616	14,8177±0,3369	15,4935	15,3838	15,4930
383,9	11,9988±0,6332	12,5270	12,4841	12,5464	14,5379±0,9519	15,4406	15,3642	15,4490
511,0	13,4816±0,3519	12,5088	12,4997	12,4900	14,5615±0,3863	15,3492	15,2977	15,3285
661,7	13,3581±0,2913	12,9214	12,4694	12,9107	15,2333±0,3326	15,7340	15,2418	15,7282
1173,2	12,4643±0,3105	12,4822	12,4698	12,4777	15,1345±0,3564	15,2660	15,2246	15,2654
1274,5	12,1372±0,3021	12,4813	12,4884	12,5017	15,2715±0,3851	15,2551	15,2300	15,2166
1332,5	11,8257±0,2664	12,4710	12,4934	12,4859	16,1990±0,3613	15,2461	15,2389	15,2753
Enerji		P50B5				P50B10)	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	20,7684±1,3774	21,1770	21,0556	18,1715	21,6232±0,6824	20,7698	20,6471	20,7504
81,0	20,2227±0,8899	19,5650	19,4127	17,2102	$18,7100\pm0,4720$	19,0105	18,8044	18,8065
276,4	14,6624±0,8185	15,3900	15,2425	15,0687	13,8736±0,7501	14,6054	14,4660	14,5067
302,9	14,1490±0,5220	15,1258	15,1569	14,9297	14,6958±0,4847	14,4532	14,4244	14,3258
356,0	14,2506±0,3486	15,1712	15,1062	14,9637	15,1199±0,3379	14,4362	14,3379	14,3072
383,9	13,9245±0,8428	15,1360	15,0660	14,9606	14,2681±0,7739	14,3924	14,3026	14,2765
511,0	13,9857±0,3733	15,0625	15,0164	14,9093	15,0337±0,3950	14,3126	14,2859	14,1708
661,7	14,6064±0,3314	15,3876	14,9844	15,2501	15,3546±0,3350	14,5951	14,2252	14,4641
1173,2	$13,1834\pm0,3300$	14,9740	14,9614	14,8594	14,6541±0,3392	14,2281	14,2225	14,1209
1274,5	14,4236±0,3909	14,9900	14,9911	14,8697	13,8971±0,3486	14,2279	14,2228	14,1078
1332,5	14,4631±0,3522	14,9628	14,9856	14,8723	13,7360±0,3075	14,2209	14,2323	14,1108
Enerji		P50B1	5			P50B20)	
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	19,8031±0,5053	20,3859	20,2315	20,6118	18,9399±0,4536	19,5730	19,8810	20,2465
81,0	17,9486±0,4570	18,4803	18,2614	18,5136	$18,1438\pm0,5440$	17,6723	17,7664	18,0332
276,4	13,3727±0,6164	13,9611	13,8190	14,0239	13,3554±0,7286	13,3858	13,2564	13,4811
302,9	$13,3504\pm0,4267$	13,8112	13,7544	13,8725	13,5010±0,4338	13,2620	13,1989	13,3230
356,0	14,2395±0,3180	13,7895	13,6811	13,8545	13,7499±0,3079	13,2258	13,1271	13,3062
383,9	13,4800±0,7074	13,7462	13,6511	13,8299	13,4831±0,7730	13,1929	13,0984	13,2677
511,0	13,2921±0,3457	13,6662	13,6080	13,7308	12,7201±0,3352	13,1197	13,0555	13,1855
661,7	13,3566±0,2964	13,9115	13,5872	13,9735	13,6594±0,2980	13,3390	13,0175	13,3988
1173,2	14,0512±0,3267	13,5811	13,5717	13,6611	12,8012±0,3017	13,0425	13,0173	13,0921
1274,5	13,8479±0,3496	13,5808	13,5774	13,6410	13,7238±0,3457	13,0430	13,0288	13,1163
1332,5	13,0835±0,2927	13,5769	13,5761	13,6563	12,6901±0,2844	13,0376	13,0085	13,1203

Tablo 4. 35. %50 pirinç ve farklı oranlarda B_4C katkılı beton numunelerin karşılaştırmalı Z_{etk} değerleri

Enerji		S	B		C50			
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	15,7775±0,3511	15,8570	18,9874	15,8928	19,8887±0,5547	20,4127	23,2997	20,8260
81,0	15,1995±0,3443	14,6031	14,3789	14,5589	18,6578±0,4662	19,1263	21,2550	19,0866
276,4	12,7318±0,6369	12,6035	12,5606	12,6035	14,5808±0,6639	14,8601	16,0935	15,3019
302,9	13,1476±0,3888	12,5747	12,5336	12,5724	14,5997±0,4532	15,2261	15,9539	15,2251
356,0	12,1473±0,2792	12,5516	12,5180	12,5616	15,1259±0,3413	15,1708	15,7944	15,1530
383,9	11,9988±0,6332	12,5270	12,4841	12,5464	15,1272±0,9199	15,1102	15,7212	15,1272
511,0	13,4816±0,3519	12,5088	12,4997	12,4900	15,4475±0,4007	15,0469	15,5997	15,0433
661,7	13,3581±0,2913	12,9214	12,4694	12,9107	15,5018±0,3389	15,1021	15,5273	15,4145
1173,2	12,4643±0,3105	12,4822	12,4698	12,4777	$14,7505\pm0,3431$	14,9794	15,4871	15,0027
1274,5	12,1372±0,3021	12,4813	12,4884	12,5017	14,5983±0,3650	14,9742	15,4977	15,0027
1332,5	11,8257±0,2664	12,4710	12,4934	12,4859	15,6857±0,3501	14,9655	15,4946	15,0055
Enerji		C50B5				C50B10		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	19,4720±0,5057	19,9780	24,6154	20,3816	18,5881±0,4307	19,5913	21,9172	19,9655
81,0	17,9639±0,4471	18,4849	22,2849	18,4741	17,3728±0,4320	17,9147	20,3865	17,9210
276,4	14,2886±0,6994	14,0922	15,1606	14,4921	13,9039±0,6380	13,4408	14,4067	13,8221
302,9	14,6136±0,5081	14,4002	15,0466	14,4378	14,3237±0,4381	13,7114	14,2988	13,7552
356,0	14,1321±0,3192	14,3353	14,9151	14,3501	14,3122±0,3214	13,6364	14,1603	13,6735
383,9	13,9141±0,7619	14,2836	14,8474	14,3192	13,7339±0,7118	13,5904	14,0903	13,6361
511,0	13,7877±0,3609	14,2188	14,7373	14,2414	12,7787±0,3323	13,5231	13,9885	13,5738
661,7	13,5511±0,2949	14,2615	14,6547	14,5693	13,2589±0,2897	13,5565	13,9193	13,8407
1173,2	14,6793±0,3413	14,1479	14,6188	14,1716	13,0119±0,3031	13,4543	13,8766	13,4971
1274,5	13,8650±0,3483	14,1477	14,6322	14,1539	13,0941±0,3268	13,4541	13,8920	13,4975
1332,5	13,8298±0,3092	14,1413	14,6346	14,1770	14,0118±0,3144	13,4486	13,8973	13,5217
Enerji		C50B1	5			C50B20		
(keV)	Deneysel	Teorik	GEANT4	FLUKA	Deneysel	Teorik	GEANT4	FLUKA
59,5	18,5540±0,4292	19,1771	23,2522	19,5900	17,8608±0,4536	18,7782	20,6299	19,2220
81,0	17,0116±0,4214	17,3629	20,5803	17,4037	$16,\!2808{\pm}0,\!5440$	16,8502	17,8352	16,9293
276,4	13,4030±0,7279	12,8767	13,7542	13,2315	12,1381±0,7286	12,3830	13,1802	12,7277
302,9	12,9794±0,4051	13,1062	13,6315	13,1639	13,1348±0,4338	12,5787	13,0679	12,6519
356,0	13,4647±0,3106	13,0354	13,5143	13,0943	13,0578±0,3079	12,5129	12,9528	12,5794
383,9	13,1343±0,7029	12,9921	13,4520	13,0593	12,3956±0,7730	12,4720	12,8896	12,5507
511,0	12,7574±0,3333	12,9261	13,3654	12,9883	12,9042±0,3352	12,4067	12,7796	12,4897
661,7	12,3600±0,2702	12,9509	13,3047	13,2238	12,3349±0,2980	12,4277	12,7411	12,6995
1173,2	12,3731±0,2876	12,8581	13,2614	12,9348	12,3427±0,3017	12,3393	12,7133	12,4135
1274,5	12,6726±0,3169	12,8578	13,2620	12,9283	11,7431±0,3457	12,3411	12,7223	12,4181
1332,5	12,3296±0,2764	12,8528	13,2628	12,9277	12,7530±0,2844	12,3365	12,7168	12,4194

Tablo 4. 36. %50 paslanmaz çelik alaşımı ve farklı oranlarda B_4C katkılı beton numunelerin karşılaştırmalı Z_{etk} değerleri

30

27 -

24 -

21

18 -

15 -

12 -

9 -

30 -

27 -

24 -

21 -¥9 N 18 -

0

200

400

600

 Z_{etk}

Şekil 4.31. Bronz katkılanmış beton numunelerin etkin atom numarası değerlerinin enerjiye göre değişim grafiği.

Şekil 4.32. Pirinç alaşımı ile katkılandırılmış beton numunelerin etkin atom numarası katsayısının enerjiye göre değişim grafiği

Şekil 4.33. Paslanmaz çelik alaşımı ile katkılandırılmış beton numunelerin etkin atom numarası katsayısının enerjiye göre değişim grafiği

Şekil 4.34. %50 bronz ve farklı oranlarda B₄C ile katkılanmış beton numunelerin etkin atom numarası değerlerinin enerjiye göre değişim grafiği

Şekil 4.35. % 50 pirinç ve farklı oranlarda B₄C ile katkılanmış beton numunelerin etkin atom numarası değerlerinin enerjiye göre değişim grafiği

Şekil 4.36. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılanmış beton numunelerin etkin atom numarası değerlerinin enerjiye göre değişim grafiği

4.5. Radyasyon Koruma Verimine Ait Araştırma Bulguları

Radyasyona zırhlama kabiliyeti ölçülen bir malzemenin radyasyon şiddetini azaltma ölçüsü olarak radyasyon koruma verimi (RKV, %) parametresi kullanılabilir. Kullanılan çimento miktarının %10-20-30-40-50'si oranında bronz, pirinç, paslanmaz çelik veya içeriğinde % 50 bronz, pirinç, veya paslanmaz çelik bulunan numunelere çimento miktarının % 5-10-15-20'si oranında B₄C katkılanarak hazırlanan beton numunelerin radyasyon koruma verimi eşitlik (2.31) aracılığı ile belirlenmiştir.

(2.31) eşitliğine göre radyasyon kaynağından yayımlanan başlangıç radyasyon (I₀) ve beton numuneden geçen radyasyon şiddeti (I) aracılığı ile RKV belirlenmiştir. Farklı oranlarda bronz, pirinç, paslanmaz çelik veya B₄C ile katkılanmış beton numunelerin radyasyon koruma verimleri değerleri Tablo 4.37- 4.42'de ve elde edilen sonuçlarla göre çizilen grafikler Şekil 4.43-4.48'de gösterilmiştir.

 Enerji (keV)	SB	B10	B20	B30	B40	B50
 59,5	63,32±0,6	$77,81\pm0,7$	83,11±0,9	89,61±1,6	94,13±2,6	95,30±2,8
81,0	46,53±0,5	56,83±0,7	61,27±0,8	69,13±1,3	78,02±1,2	78,12±1,4
276,4	22,28±0,5	24,10±0,5	25,51±0,8	$25,48\pm1,1$	28,33±0,4	28,10±1,3
302,9	$22,18\pm0,4$	24,53±0,6	24,18±0,6	23,93±0,8	27,25±0,3	29,53±0,8
356,0	$19,49{\pm}0,5$	21,71±0,4	22,99±0,9	21,70±1,0	$25,98{\pm}0,3$	25,97±0,6
383,9	$18,75\pm0,3$	20,86±0,4	20,98±1,1	23,53±0,9	23,93±1,4	24,26±0,4
511,0	$18,66\pm0,3$	$18,55{\pm}0,5$	17,96±0,6	19,00±0,6	22,36±0,3	22,03±0,3
661,7	$16,18\pm0,2$	$17,78\pm0,3$	17,32±0,5	$17,49\pm0,5$	20,23±0,2	19,67±0,3
1173,2	12,13±0,2	12,69±0,2	14,11±0,5	14,13±0,5	$16,18\pm0,1$	$15,42\pm0,2$
1274,5	$11,38\pm0,1$	13,00±0,3	11,83±0,3	$12,82\pm0,4$	$15,32\pm0,6$	15,21±0,4
1332,5	$10,87\pm0,1$	12,84±0,1	12,02±0,4	13,32±0,3	15,14±0,3	14,49±0,2

Tablo 4. 37. Bronz katkılı beton numunelerin seçilen enerji değerlerindeki radyasyon koruma verimlilik değerleri (%)

Enerji	SB	P10	P20	P30	P40	P50
<u>(Kev)</u> 59,5	63,32±0,6	74,40±0,7	79,66±0,6	85,11±0,8	89,25±1,3	90,40±1,1
81,0	46,53±0,5	52,22±0,6	57,81±0,9	62,76±0,8	68,53±0,8	70,29±1,0
276,4	22,28±0,5	22,38±0,9	25,24±0,8	25,85±1,0	27,47±0,9	28,25±0,8
302,9	22,18±0,4	22,71±0,5	24,03±0,7	25,95±0,6	27,28±0,6	26,34±0,7
356,0	19,49±0,5	22,45±0,6	23,63±0,6	24,44±0,6	25,33±0,4	24,25±0,5
383,9	18,75±0,3	20,63±1,1	21,60±1,2	22,56±0,9	24,22±1,1	23,18±0,9
511,0	18,66±0,3	18,91±0,6	19,62±0,8	19,75±0,4	21,08±0,2	20,75±0,4
661,7	16,18±0,2	17,15±0,4	17,12±0,3	18,33±0,3	20,66±0,2	18,97±0,3
1173,2	12,13±0,2	13,41±0,3	13,82±0,1	14,95±0,1	$15,88{\pm}0,1$	15,02±0,3
1274,5	11,38±0,1	12,53±0,3	13,80±0,1	13,94±0,2	15,16±0,1	14,57±0,3
1332,5	10,87±0,1	12,59±0,1	13,34±0,1	13,10±0,1	14,96±0,1	15,08±0,1

Tablo 4. 38. Pirinç katkılı beton numunelerin seçilen enerji değerlerindeki radyasyon koruma verimliği (%)

Tablo 4. 39. Paslanmaz çelik katkılı beton numunelerin seçilen enerji değerlerindeki radyasyon koruma verimliği (%)

Enerji	SB	C10	C20	C30	C40	C50
<u>(Kev)</u> 59,5	63 32+0 6	68 46+0 7	73 00+0 6	76 97+0 8	79 88+1 3	81 55+1 1
81,0	46,53±0,5	49,06±0,6	52,64±0,9	56,00±0,8	57,33±0,8	58,66±1,0
276,4	22,28±0,5	22,32±0,9	23,11±0,8	23,41±1,0	23,14±0,9	23,29±0,8
302,9	22,18±0,4	22,94±0,5	22,50±0,7	23,58±0,6	23,33±0,6	21,94±0,7
356,0	19,49±0,5	20,24±0,6	20,56±0,6	21,05±0,6	21,44±0,4	21,23±0,5
383,9	$18,75\pm0,3$	19,79±1,1	19,80±1,2	20,67±0,9	20,74±1,1	20,66±0,9
511,0	18,66±0,3	17,31±0,6	17,55±0,8	19,46±0,4	18,92±0,2	$18,80\pm0,4$
661,7	$16,18\pm0,2$	16,25±0,4	16,84±0,3	17,17±0,3	16,94±0,2	16,88±0,3
1173,2	12,13±0,2	12,73±0,3	12,93±0,1	13,46±0,1	12,57±0,1	12,56±0,3
1274,5	$11,38\pm0,1$	12,41±0,3	12,62±0,1	12,73±0,2	$12,87\pm0,1$	11,96±0,3
1332,5	$10,87\pm0,1$	11,54±0,1	$11,65\pm0,1$	11,96±0,1	11,57±0,1	12,53±0,1

Enerji (keV)	SB	B50	B50B5	B50B10	B50B15	B50B20
59,5	63,32±0,6	95,30±2,3	96,78±4,2	94,91±2,7	94,83±2,4	93,51±3,3
81,0	46,53±0,5	78,12±1,8	81,26±1,4	76,40±1,6	75,91±1,7	73,67±2,7
276,4	22,28±0,5	29,10±1,1	32,10±1,1	29,44±1,4	28,80±1,3	26,33±1,2
302,9	22,18±0,4	29,54±0,6	31,92±1,6	27,41±0,8	$27,78\pm0,8$	24,18±1,3
356,0	$19,49{\pm}0,5$	26,98±0,8	28,14±0,7	27,07±0,8	27,27±0,9	23,76±0,9
383,9	18,75±0,3	24,21±0,5	27,41±0,6	24,93±0,7	25,68±1,1	23,22±0,7
511,0	18,66±0,3	23,84±0,3	23,62±0,8	21,88±0,8	23,42±0,6	20,71±0,6
661,7	16,18±0,2	21,67±0,2	21,34±0,4	20,94±0,5	20,07±0,4	18,92±0,5
1173,2	12,13±0,2	$16,42\pm0,1$	16,77±0,2	15,87±0,4	15,76±0,3	13,70±0,3
1274,5	11,38±0,1	15,22±0,2	16,02±0,2	14,82±0,2	$14,\!48{\pm}0,\!1$	13,83±0,2
1332,5	$10,87{\pm}0,1$	$14,49{\pm}0,1$	$15,42\pm0,1$	14,10±0,2	15,33±0,1	12,48±0,2

Tablo 4. 40. %50 bronz ve B₄C katkılı beton numunelerin seçilen enerji değerlerindeki radyasyon koruma verimlilik değerleri (%)

Tablo 4. 41. %50 pirinç ve B₄C katkılı beton numunelerin seçilen enerji değerlerindeki radyasyon koruma verimlilik değerleri (%)

Enerji (keV)	SB	P50	P50B5	P50B10	P50B15	P50B20
59,5	63,32±0,6	90,39±1,6	92,74±2,4	89,83±2,6	89,65±2,3	86,90±2,1
81,0	46,53±0,5	70,29±1,4	75,35±1,9	66,75±1,8	68,70±1,7	67,23±1,5
276,4	22,28±0,5	28,26±1,1	29,42±0,9	25,25±1,3	27,31±1,3	26,81±1,1
302,9	22,18±0,4	26,34±0,7	27,69±0,9	25,72±0,8	26,45±0,8	26,24±0,9
356,0	19,49±0,5	24,25±0,8	26,05±0,7	24,65±0,9	26,18±0,7	24,98±0,7
383,9	18,75±0,3	23,18±0,5	24,82±0,9	22,78±1,1	24,28±0,7	23,88±0,7
511,0	18,66±0,3	20,75±0,4	22,29±0,6	21,33±0,6	21,48±0,5	20,31±0,8
661,7	16,18±0,2	18,97±0,4	20,43±0,5	19,19±0,4	19,08±0,4	19,17±0,5
1173,2	12,13±0,2	15,02±0,3	14,80±0,4	14,59±0,5	15,84±0,3	14,30±0,3
1274,5	11,38±0,1	14,57±0,1	15,46±0,2	13,36±0,4	15,04±0,2	14,66±0,2
1332,5	$10,87\pm0,1$	$15,08{\pm}0,1$	15,19±0,2	12,94±0,2	13,98±0,1	13,36±0,1

Enerji	SB	C50	C50B5	C50B10	C50B15	C50B20
(keV)						
59,5	63,32±0,6	81,55±1,6	83,31±1,9	82,99±2,7	83,17±2,2	81,71±3,3
81,0	46,53±0,5	58,66±1,3	60,83±1,7	61,54±1,8	61,63±1,9	60,21±1,2
276,4	22,28±0,5	23,29±1,2	25,68±1,5	26,97±1,4	27,31±1,4	25,76±0,9
302,9	22,18±0,4	21,94±1,3	24,73±0,9	26,19±1,1	25,20±1,2	26,18±0,7
356,0	19,49±0,5	21,23±0,9	22,56±1,0	24,62±0,8	24,48±0,9	24,53±0,8
383,9	18,75±0,3	20,66±0,8	21,66±0,8	23,13±0,7	23,33±0,7	22,83±1,1
511,0	18,66±0,3	18,80±0,6	19,22±0,8	19,43±0,9	20,38±0,6	21,21±0,6
661,7	16,18±0,2	16,88±0,4	16,95±0,5	$18,02{\pm}0,5$	17,78±0,4	18,31±0,5
1173,2	12,13±0,2	12,56±0,3	$14,22\pm0,4$	13,82±0,3	13,88±0,4	14,29±0,3
1274,5	11,38±0,1	11,96±0,1	12,97±0,3	13,36±0,3	13,65±0,3	13,13±0,2
1332,5	10,87±0,1	12,53±0,4	12,68±0,3	13,94±0,1	13,03±0,2	13,88±0,2

Tablo 4. 42. %50 paslanmaz çelik ve B₄C katkılı beton numunelerin seçilen enerji değerlerindeki radyasyon koruma verimlilik değerleri (%)

Şekil 4.37. Bronz katkılı beton numunelerin seçilen enerji değerlerindeki radyasyon koruma verimliliklerinin enerjiye göre değişimi

Şekil 4.38. Pirinç katkılı beton numunelerin seçilen enerji değerlerindeki radyasyon koruma verimliliklerinin enerjiye göre değişimi

Şekil 4.39. Paslanmaz çelik katkılı beton numunelerin seçilen enerji değerlerindeki radyasyon koruma verimliliklerinin enerjiye göre değişimi

Şekil 4.40. %50 bronz ve farklı oranlarda B₄C katkılı beton numunelerin seçilen enerji değerlerindeki radyasyon koruma verimliliklerinin enerjiye göre değişimi

Şekil 4.41. %50 pirinç ve farklı oranlarda B₄C katkılı beton numunelerin seçilen enerji değerlerindeki radyasyon koruma verimliliklerinin enerjiye göre değişimi

Şekil 4.42. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı beton numunelerin seçilen enerji değerlerindeki radyasyon koruma verimliliklerinin enerjiye göre değişimi

4.6. Nötron Radyasyonu Zırhlama Parametrelerine Ait Araştırma Bulguları

Bu tez çalışmasında gama radyasyonu azaltma parametreleri yanında nötron radyasyonu azaltma parametreleri de belirlenmiştir. Nötron radyasyonu zırhlama özellikleri Monte Carlo tabanlı GEANT4 ve FLUKA simülasyon programları vardımı ile gerçekleştirilmiştir. Çalışmanın nötron radyasyonu zırhlama özellikleri belirleme asamalarında B50, P50, C50 numunelerine cimento miktarının %5, %10, %15 ve %20'si oranında B₄C katkısı yapılmış numuneler çalışılmıştır. GEANT4 ve FLUKA simülasyon programlarının kullanılması, sonuçlar arasında karşılaştırma yapma imkanı sunmuştur. Ayrıca, iki farklı simülasyon programlarının tercih edilmesi sonuçların doğruluğunu teyit etme imkanı sağlamıştır. Yapılan çalışmaların ilkinde farklı enerji değerlerinde ve farklı numune kalınlıklarında incelenen betondan geçen nötron sayıları analiz edilmiştir. Beton numuneler üzerine 10 milyon nötron gönderilmiştir. Simülasyon programlarında tercih edilen enerji değerleri sırasıyla 1,1 MeV, 1,5 MeV, 2 MeV, 3 MeV, 4,5 MeV, 6 MeV, 7 MeV, 8 MeV ve 10 MeV'dir. Numune kalınlıkları ise 1 cm, 2,5 cm, 5 cm, 7 cm, 10 cm, 13 cm, 16 cm, 20 cm ve 25 cm alınmıştır. Bunun dışında, 4,5 MeV enerji değerinde ve 1

cm numune kalınlığında makroskobik tesir kesiti, ortalama serbest yol değerleri de GEANT4 ve FLUKA aracılığı ile incelenmiştir. Teorik olarak hızlı nötron uzaklaştırma tesir kesiti eşitlik (2.34) yardımı ile hesaplanmıştır.

Enerji	B50B5		B5(0B10	B5(B50B15		B50B20	
(Mev)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	
1,1	7549630	7751820	7537880	7433780	7526990	7401410	7514010	7487240	
1,5	8442910	8289530	8384280	8238080	8350260	8151150	8337790	7970220	
2,0	8499830	8346620	8458320	8314810	8421750	8257920	8388030	8130110	
3,0	8514550	8361960	8476620	8337670	8455160	8293210	8394870	8269200	
4,5	8567320	8405040	8509090	8350310	8484490	8265120	8441820	8322740	
6,0	8590530	8443770	8577660	8529810	8554510	8405670	8494790	8374390	
7,0	8614410	8589910	8605290	8554530	8571070	8505470	8557460	8470930	
8,0	8650830	8588380	8617890	8581130	8589020	8548490	8582400	8527930	
10,0	8583720	8543640	8567750	8529780	8554630	8506290	8539520	8481700	

Tablo 4. 43. %50 bronz ve farklı oranlarda B₄C katkılı 1 cm kalınlığındaki beton numunelerden farklı enerjilerde göre geçen nötron sayısı

Tablo 4. 44. % 50 pirinç ve farklı oranlarda B₄C katkılı 1 cm kalınlığındaki beton numunelerden farklı enerjilerde göre geçen nötron sayısı

Enerji	P50B5		P50	P50B10)B15	P50B20		
(Mev)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	
1,1	7552230	7466130	7538350	7764790	7527980	7721210	7515070	7705840	
1,5	8438200	7810420	8378310	8263280	8317060	8025330	8278990	7884160	
2,0	8496170	7984220	8454570	8338350	8420630	8288760	8386270	8262480	
3,0	8394760	8011520	8371360	8354250	8349580	8311770	8302900	8290810	
4,5	8411050	8156520	8394820	8299790	8378810	8266100	8368510	8255590	
6,0	8375380	8167740	8360970	8434320	8346230	8365010	8334570	8349910	
7,0	8587330	8298770	8565340	8576300	8556970	8564500	8541770	8559080	
8,0	8634440	8318180	8603340	8566920	8584790	8526570	8560260	8519970	
10,0	8572870	8300650	8571870	8539000	8569980	8540240	8568730	8529770	

Enerji	C50B5		C50B10		C5(0B15	C50B20	
(Mev)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	7556880	7807530	7542350	7785670	7533090	7768090	7519780	7749540
1,5	8509740	8293850	8446360	8201570	8387820	8196770	8349330	8155480
2,0	8493610	8315030	8452710	8284830	8415800	8254940	8386040	8232070
3,0	8366240	8312370	8340720	8289220	8322540	8269310	8298750	8248630
4,5	8343670	8253230	8330990	8244160	8393070	8230500	8268820	8223310
6,0	8346110	8403900	8336850	8392060	8327550	8381070	8318340	8369840
7,0	8537230	8536010	8503090	8481100	8469080	8457040	8435200	8426600
8,0	8592630	8569040	8566250	8543420	8543770	8519990	8519060	8501700
10,0	8537260	8544230	8524660	8529920	8512120	8517220	8509320	8504650

Tablo 4. 45. % 50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 1 cm kalınlığındaki beton numunelerden farklı enerjilerde göre geçen nötron sayısı

Şekil 4.43. %50 bronz ve farklı oranlarda B_4C katkılı 1 cm kalınlığındaki beton numunelerden farklı enerjilerde göre geçen nötron sayısı

Şekil 4.44. %50 pirinç ve farklı oranlarda B₄C katkılı 1 cm kalınlığındaki beton numunelerden farklı enerjilerde göre geçen nötron sayısı

Şekil 4.45 %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 1 cm kalınlığındaki beton numunelerden farklı enerjilerde göre geçen nötron sayısı

Enerji	B50B5		B50	B50B10)B15	B50B20		
(Mev)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	
1,1	4952350	5294050	4932880	5261930	4914070	5208190	4898000	4852480	
1,5	6557630	6260600	6431550	6161410	6322050	5998820	6214100	5673450	
2,0	6659990	6363570	6580150	6302780	6508340	6195140	6442920	5960100	
3,0	6472800	6395020	6421490	6346780	6380240	6263940	6341780	6221670	
4,5	6421490	6289140	6401490	6263350	6458850	6210390	6433850	5948000	
6,0	6450240	6551390	6422940	6524750	6395000	6474890	6376210	6410320	
7,0	6866610	6841150	6829030	6828870	6797600	6805420	6769690	6751890	
8,0	6962420	6834760	6896860	6786770	6848090	6696990	6798070	6273450	
10,0	7711610	6748510	6793930	6723470	6775080	6674960	6759550	6547100	

Tablo 4. 46. %50 bronz ve farklı oranlarda B₄C katkılı 2,5 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Tablo 4. 47. %50 pirinç ve farklı oranlarda B₄C katkılı 2,5 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Enerji	P50B5		P5()B10	P50B15		P50B20	
(Mev)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	4956330	4814350	4934970	5313230	4916310	5242990	4899370	5159260
1,5	6549360	5394320	6426880	6206870	6279650	6147290	6154810	6096530
2,0	6656800	5696310	6574770	6347040	6501990	6254490	6440190	6201570
3,0	6458350	5744420	6407360	6378210	6366690	6300970	6327260	6256610
4,5	6489190	5823210	6459370	6277490	6457140	6214420	6433740	6191950
6,0	6422390	6022610	6391230	6536380	6370900	6452290	6342960	6390880
7.0	6833240	6276130	6798310	6815120	6768310	6595540	6743580	6376230
8.0	6932300	6306310	6791940	6791940	6811340	6743000	6779050	6725060
10,0	6805110	6274690	6805380	6736100	6804360	6713590	6803770	6694510

Enerji	C50B5		C50B10		C5	0B15	C50B20	
(Mev)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1.1	4959340	5385760	4939010	5349260	4921580	5309820	4907650	5289370
15	6677400	6265160	6554240	6130060	6428960	6083610	6305000	6008100
2.0	6640650	(2010(0	6560010	(242820	6120900	(100270	(427000	(14(070
2,0	6649650	6301060	6569010	6242830	6505720	6190370	6437990	6146070
3,0	6400490	6293710	6356360	6255310	6317120	6213230	6278320	6180540
4,5	6359120	6190770	6335310	6170590	6312830	6144480	6294780	6107260
6,0	6365410	6476040	6347250	6452830	6327580	6426860	6309990	6408290
7,0	6733670	6802060	6673340	6736010	6586790	6647360	6501160	6572790
8,0	6847070	6794780	6788450	6744990	6735650	6704070	6686390	6665190
10,0	6729710	6749330	6707430	6721030	6689440	6697970	6667500	6674310

Tablo 4. 48. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 2,5 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.46. %50 bronz ve farklı oranlarda B_4C katkılı 2.5 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.47. %50 pirinç ve farklı oranlarda B_4C katkılı 2.5 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.48 %50 paslanmaz çelik ve farklı oranlarda B4C katkılı 2.5 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Enerji	B50B5		B5(B50B10)B15	B50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	2452520	2800260	2432280	2768620	2413050	2709540	2399860	2352820
1,5	4294580	3920300	4142310	3799700	4002930	3600570	3872040	3217140
2,0	4437990	4049120	4328180	3971320	4235320	3841660	4152700	3549740
3,0	4194160	4089220	4124820	4031780	4072300	3923410	4018060	3873500
4,5	4248410	3955440	4207850	3919290	4171560	3857450	4139490	3540730
6,0	4158580	4296540	4127730	4253470	4101760	4192820	4082300	4116740
7,0	4713180	4680920	4663440	4646200	4624610	4630620	4587530	4569440
8,0	4846510	4673150	4754970	4602590	4698330	4484580	4620600	3936740
10,0	4662620	4551660	4567230	4516570	4567230	4452370	4528660	4288630

Tablo 4. 49. %50 bronz ve farklı oranlarda B_4C katkılı 5 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Tablo 4. 50. %50 pirinç ve farklı oranlarda B₄C katkılı 5 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Enerji	P50B5		P50B10		P5()B15	P50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	2459220	2318030	2436600	2821990	2416310	2821990	2407620	2721020
1,5	4289410	3911860	4131380	3855450	3978040	3309590	3845030	3245080
2,0	4429700	4244450	4321670	4025330	4229370	3912650	4144320	3847910
3,0	4169750	3898740	4104060	4068560	4053730	3968080	4007580	3919410
4,5	4208350	4187860	4170730	3933490	4132520	3861800	4102610	3786250
6,0	4121060	4129680	4088440	4270070	4041100	4187810	4002660	4009830
7,0	4669750	4535200	4617380	4644320	4586180	4528770	4549490	4479050
8,0	4804660	4839460	4716040	4614630	4654010	4583310	4598050	4557730
10,0	4631940	4739060	4632700	4540760	4629070	4512250	4628770	4496050

Enerji	C50B5		C5	C50B10		0B15	C50B20		
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	
1,1	2459890	2901040	2439940	2861220	2418060	2819970	2409080	2793980	
1,5	4261080	3926380	4297150	3818850	4189240	3701950	4095680	3609160	
2,0	4422130	3974290	4317500	3901940	4228270	3833150	4143610	3778180	
3,0	4099730	3967130	4041030	3910300	3990450	3862310	3945920	3845530	
4,5	4040350	3833130	4012010	3805530	3987520	3770470	3963860	3729470	
6,0	4050890	4191720	4026780	4157120	4004560	4132150	3981640	4101180	
7,0	4702060	4572330	4458460	4503990	4410650	4468720	4399620	4412770	
8,0	4725450	4617130	4611540	4553760	4563500	4550920	4522910	4537020	
10,0	4530410	4551840	4498140	4514850	4465380	4486020	4435660	4445910	

Tablo 4. 51. %50 paslanmaz çelik ve farklı oranlarda B $_4$ C katkılı 5 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.49. %50 bronz ve farklı oranlarda B₄C katkılı 5 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.50. %50 pirinç ve farklı oranlarda B₄C katkılı 5 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.51. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 5 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı
Enerji	B50B5		B50B10		B50B15		B50B20	
 (MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	1400940	1682170	1382310	1655790	1365300	1606680	1352030	1319100
1,5	3063690	2693450	2907850	2579090	2751770	2392300	2601320	2046900
2,0	3206430	2822280	3100780	2744360	3003670	2617410	2921930	2347360
3,0	2960820	2858960	2894210	2799270	2843460	2698900	2791190	2647140
4,5	3014750	2731650	2975180	2694160	2939190	2634410	2939190	2736340
6,0	2928670	3062110	2894970	3024100	2885890	2957880	2876020	2888390
7.0	3490390	3453330	3439640	3428830	3394270	3333760	3055300	3004650
8.0	3625020	3575580	3534910	3320850	3465880	3255330	3413000	3509640
10,0	3432330	3324390	3388270	3286450	3354060	3222290	3318580	3452990

Tablo 4. 52. % 50 bronz ve farklı oranlarda B₄C katkılı 7 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Tablo 4. 53. %50 pirinç ve farklı oranlarda B₄C katkılı 7 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Enerji	P50B5		P50B10		P50B15		P50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	1403670	1290700	1382520	1699600	1366420	1668020	1359870	1625070
1,5	3052770	1775980	2900060	2629480	2749270	2486830	2599040	2337010
2,0	3200100	3168390	3089820	2799150	2996590	2519810	2916230	2483030
3,0	2940790	3119310	2875140	2841570	2825130	2741220	2979410	2530680
4,5	2981050	3220050	2935960	2715380	2903070	2670580	2870850	2611630
6,0	3292830	3310760	2858460	3016180	2834780	2986550	2824660	2799550
7,0	3442210	3710760	3393810	3416180	3353680	3209840	3317930	3119730
8,0	3584150	3750210	3489910	3420950	3422940	3386520	3368790	3340970
10,0	3406100	3716700	3358460	3312300	3319060	3287720	3278550	3249660

Enerji	C50B5		C50B10		C50B15		C50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	1401140	1766760	1389440	1735730	1379650	1709800	1362500	1678820
1,5	3230270	2702090	3063020	2635540	2976060	2488940	2887040	2402790
2,0	3190210	2746300	3083060	2674320	2993240	2603510	2914280	2559040
3,0	2867770	2738000	2812730	2685740	2764090	2620470	2721620	2586120
4.5	2813830	2610720	2783930	2582670	2761900	2555200	2738300	2539130
6.0	3190390	2962420	3139640	2930720	3094270	2997550	3155300	2861090
7.0	3307/10	3351060	32/9570	3302990	3192700	3246090	3136850	3187000
8.0	3463070	3300570	329/550	3321800	3311660	3214090	3262010	3280510
10.0	3300730	3325260	3269350	3288050	32/2890	3251090	3211010	3239060

Tablo 4. 54. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 7 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.52. %50 bronz ve farklı oranlarda B_4C katkılı 7 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.53. %50 pirinç ve farklı oranlarda B₄C katkılı 7 cm kalınlığındaki beton numunelerden farklı enerjide geçen nötron sayısı

Şekil 4.54. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 7 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

En	erji	B50B5		B50B10		B50B15		B50B20	
(M	eV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,	,1	602782	783915	590529	766119	579642	735276	568247	552742
1,	,5	1842090	1532700	1713300	1442160	1605810	1297040	1511900	1035700
2.	,0	1970570	1638340	1876460	1577780	1793710	1473420	1724570	1259460
3.	.0	1754360	1672970	1701980	1622180	1656190	1539820	1618750	1497360
4.	.5	1805520	1566650	1768730	1537580	1739640	1489380	1713420	1651400
6	0	1731390	1843230	1702980	1811510	1682730	1757530	1651940	1693050
7	,0	2222450	2190450	2176660	2169310	2137870	2154110	2103080	1881450
, , 8	,0	2222430	2190450	2260810	210/310	2203600	2013250	2103000	17/8800
0,	,0 \ 0	2347910	2101120	2200010	2041280	2203000	1005620	2109500	1027250
10	,0	2172010	2070770	2155200	2041200	2071330	1773030	2006550	175/550

Tablo 4. 55. %50 bronz ve farklı oranlarda B₄C katkılı 10 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Tablo 4. 56. %50 pirinç ve farklı oranlarda B₄C katkılı 10 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Enerji	P50B5		P50B10		P50B15		P50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	603392	538539	592012	795755	581672	758304	570905	739096
1,5	1836160	1846830	1706230	1484710	1609510	1368820	1501970	1303470
2,0	1965150	1752880	1868790	1620030	1788500	1466400	1719050	1374060
3,0	1742330	1789190	1686890	1655340	1643060	1573300	1605370	1481510
4,5	1754360	1850040	1701980	1550340	1656190	1495300	1618750	1469640
6,0	1800030	1919010	1670650	1821570	1641220	1609540	1612960	1487550
7,0	1983440	1949140	2136970	2156370	2099870	2042930	2066780	1920640
8,0	2309070	2201120	2221940	2232040	2176250	2176510	2129730	2109030
10,0	2143640	1952620	2104820	2060670	2075590	2047020	2021030	2019350

Enerji	C50B5		C50B10		C50B15		C50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	604972	841428	596941	817954	588662	799333	579065	781960
1,5	1990070	1541200	1843590	1424000	1784300	1368930	1725100	1302260
2,0	1954400	1578700	1861530	1517770	1784350	1462330	1717740	1424700
3,0	1680170	1571720	1632320	1530810	1591050	1498500	1557870	1467330
4,5	1630770	1469570	1609770	1444520	1590080	1420010	1572050	1412510
6,0	1641350	1759420	1621630	1730720	1600920	1699350	1581040	1657230
7,0	2055430	2087440	2023110	2069520	1973870	2034770	1911910	1999500
8,0	2197260	2134960	2127090	2070700	2064050	2066090	2001980	2042970
10,0	2054680	2074810	2025050	2041630	2009470	2018340	1998640	2007420

Tablo 4. 57. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 10 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.55. %50 bronz ve farklı oranlarda B_4C katkılı 10 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.56. %50 pirinç ve farklı oranlarda B_4C katkılı 10 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.57. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 10 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Enerji	B50B5		B50B10		B50B15		B50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	258377	364434	253222	353934	249559	336155	244988	232943
1,5	1109820	875543	1008960	805935	940053	702016	862371	533926
2,0	1211100	953387	1135130	907104	1071790	829838	916420	677034
3,0	1042140	978381	999919	917532	966970	869023	966970	845543
4,5	1080870	896631	1053020	856556	1029980	841832	1008570	672253
6,0	1022730	1110020	1001750	1058240	982654	1003490	961892	994206
7,0	1413580	1389890	1375740	1357970	1347860	1330380	1317800	1308460
8,0	1520010	1383020	1448240	1297110	1401650	985025	1367980	1071860
10,0	1373210	1294410	1341630	1213540	1311010	1193940	1286950	1170990

Tablo 4. 58. %50 bronz ve farklı oranlarda B₄C katkılı 13 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Tablo 4. 59. %50 pirinç ve farklı oranlarda B₄C katkılı 13 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Enerji	P50B5 GEANT4 FLUKA		P50B10		P50B15		P50B20	
(MeV)			GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	259648	223114	254074	372476	250068	352009	245912	341905
1,5	1105610	403363	1004810	837261	953356	784634	829370	716351
2,0	1205690	534875	1128660	939846	1066070	778321	760868	684287
3,0	1030160	559992	990082	964869	955005	766832	927515	690805
4,5	1055160	600888	1025470	887007	1006210	843857	985791	801957
6,0	998433	717883	977078	1092020	956497	878946	933090	784256
7,0	1379220	885098	1341400	1359910	1315520	1309760	1288330	1276370
8,0	1486620	910101	1416010	1337280	1365870	1345100	1328780	1315470
10,0	1352420	888179	1319590	1283030	1288650	1259800	1271350	1239220

Enerji	C50B5		C50B10		C50B15		C50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	260451	400837	255831	386726	249824	375940	246873	362974
1,5	1225870	879769	1110990	815677	1023340	754263	978964	695072
2,0	1198230	906590	1125760	864843	1065770	826504	1011260	794153
3,0	981912	901399	947120	870806	917997	839014	893577	813751
4,5	947259	826647	930997	813005	915601	795389	902461	782097
6,0	953424	1043600	940278	1020510	927551	998147	913669	971006
7,0	1278700	1286020	1254850	1267010	1220690	1247060	1186920	1201190
8.0	1395900	1342350	1338100	1294770	1301990	1273230	1266500	1268010
10,0	1275980	1294860	1254870	1267810	1231300	1243000	1208230	1222810

Tablo 4. 60. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 13 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.58 %50 bronz ve farklı oranlarda B₄C katkılı 13 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi

Şekil 4.59. %50 pirinç ve farklı oranlarda B₄C katkılı 13 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi

Şekil 4.60. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 13 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı değişimi

Enerji	B50B5		B50B10		B50B15		B50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	111205	170144	108114	163967	106423	154098	103755	97009
1,5	669652	499223	594784	450461	528307	380555	463441	265744
2,0	742456	554363	687435	519717	641234	466693	600592	362542
3,0	617680	571811	588064	523887	564945	502756	542144	479159
4,5	648205	514003	626554	499712	609838	545628	594493	457719
6,0	604726	668509	587930	609332	571653	594604	553987	583720
7,0	899049	881277	871987	876524	826256	862033	847052	847971
8,0	984784	877622	927639	815063	883097	804025	849568	798866
10,0	866010	806396	842330	837632	819957	810634	798506	829601

Tablo 4. 61. %50 bronz ve farklı oranlarda B₄C katkılı 16 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Tablo 4. 62. %50 pirinç ve farklı oranlarda B₄C katkılı 16 cm kalınlığındaki beton numunelerden farklı eerjilerde geçen nötron sayısı

	Fnonii	P50B5		D50B10		P50R15		P50B20	
	(MoV)	CEANT4		CEANT4				CEANT4	
-	(\mathbf{WIev})	GEAN14	FLUKA	GEAN14	FLUKA	GEAN14	FLUKA	GEAN14	FLUKA
	1,1	111914	93155	108896	124638	106879	89551	104129	80375
	1,5	665585	492839	590985	472190	523386	409775	452089	342610
	2,0	739822	272751	681639	543576	636820	428705	598590	301857
	3,0	608462	287906	579699	563365	556430	488064	535949	399850
	4,5	628925	313872	607612	506756	593154	476753	578271	442351
	6,0	586549	389929	570580	655185	554235	617925	541298	597854
	7,0	873055	507400	846860	860192	824508	824065	802798	798317
	8,0 10.0	957493 850472	522789 507006	902653 826522	897365 799893	875921 803568	871364 756339	843964 783554	840368 740480
	6,0 7,0 8,0 10,0	586549 873055 957493 850472	389929 507400 522789 507006	570580 846860 902653 826522	655185 860192 897365 799893	554235 824508 875921 803568	617925 824065 871364 756339	541298 802798 843964 783554	59785 79831 84036 74048

Enerji	C50B5		C50B10		C50B15		C50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	112603	190402	109838	182869	106557	173096	104558	169922
1,5	705064	501664	650070	476324	598224	415102	529573	398705
2,0	634872	520554	600426	491367	609716	480772	595690	461550
3,0	574888	518720	550215	495847	529747	477551	510388	460908
4,5	550242	465903	537992	454455	526857	443787	517690	432605
6,0	554712	619032	544682	605008	533268	594335	522977	582661
7,0	795089	811624	777103	789051	756375	764338	733465	742557
8,0	886351	843853	840901	805099	791554	799442	772906	774069
10,0	794856	806674	773875	785842	752996	764906	733585	741558

Tablo 4. 63. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 16 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.61. %50 bronz ve farklı oranlarda B₄C katkılı 16 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi

Şekil 4.62. %50 pirinç ve farklı oranlarda B₄C katkılı 16 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi

Şekil 4.63. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 16 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi

Enerji	B50B5		B50B10		B50B15		B50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	36279	61699	34782	58431	32956	54139	30875	60731
1,5	339652	235567	293444	208614	259074	167192	227806	173559
2.0	3880/11	268876	351055	2/8315	322441	217148	297595	100722
2,0	200101	200070	2000/0	2=4005	274020	217140	201000	191056
3,0	308181	279872	289868	254905	274939	23/511	262460	181056
4,5	324829	244193	313287	236215	302918	221586	292713	197552
6,0	299626	340193	289562	312449	278963	298045	269251	271492
7,0	494801	479624	472193	472336	457055	468283	442323	397337
8,0	549731	477175	511552	403652	485396	469954	459339	410153
10,0	470109	429666	454788	445069	439621	428907	423892	394176

Tablo 4. 64. %50 bronz ve farklı oranlarda B $_4$ C katkılı 20 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Tablo 4. 65. %50 pirinç ve farklı oranlarda B₄C katkılı 20 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Enerji	P50B5		P50B10		P50B15		P50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	36463	29092	34876	63181	33064	47904	31029	39957
1,5	337273	271597	291549	219627	253461	188993	223608	172644
2,0	365480	210792	349526	206847	319147	145698	294837	127305
3,0	292414	218061	284559	275179	270295	197605	258163	172334
4,5	313401	232372	302015	240599	292119	222640	284457	208854
6,0	289006	273509	280300	331967	270256	222654	261291	187943
7,0	444171	239776	457375	465220	442013	433908	426819	424349
8,0	496789	249250	494688	489611	467905	463281	451230	445637
10,0	449996	240124	442366	424110	426897	396970	409205	386830

Enerji	C50B5		C50B10		C50B15		C50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	36672	70576	35611	67061	33979	63095	33979	60731
1,5	395360	238303	341483	212037	300942	187311	267495	173559
2,0	382162	248649	347188	230482	318827	215661	294110	199722
3,0	281632	246554	267214	221635	253427	198443	243421	181056
4,5	267224	216123	259037	210167	253272	204111	247786	197552
6,0	268723	308570	263533	299021	258436	285033	252981	271492
7,0	423243	445233	411706	430819	400389	409528	387375	397337
8,0	482602	453620	452717	428324	426587	413875	402853	410153
10,0	422236	429535	409527	416502	393055	404145	382197	394176

Tablo 4. 66. %50 paslanmaz çelik ve farklı oranlarda B $_4C$ katkılı 20 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.64 %50 bronz ve farklı oranlarda B₄C katkılı 20 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi

Şekil 4.65. %50 pirinç ve farklı oranlarda B₄C katkılı 20 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi

Şekil 4.66. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 20 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi

Enerji	B50B5		B50B10		B50B15		B50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA
1,1	8789	17332	8524	16372	8220	14493	7943	7177
15	145494	92078	121233	79246	97525	60/13	82982	34556
1,5	1+3+7+	12010	121233	77240)1525	00415	02702	54550
2,0	172068	108636	151859	98666	136180	83105	122941	56411
3,0	129306	114492	119170	103945	111989	89761	104978	61289
4,5	132549	96840	125643	92313	120828	87095	116760	78235
6,0	124680	147141	119623	132086	112527	125923	103256	118434
7,0	232322	224026	220946	221465	211970	218097	203329	202672
8,0	266646	221950	243665	219657	224203	194158	206775	181456
10,0	219646	196502	209541	187983	199023	175446	189756	144246

Tablo 4. 67. %50 bronz ve farklı oranlarda B₄C katkılı 25 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Tablo 4. 68. %50 pirinç ve farklı oranlarda B₄C katkılı 25 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

	D50D5								
Enerji	P50	B5	P501	B10	P501	315	P501	B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	
1,1	8984	6814	8556	17969	8325	6772	7967	17181	
1,5	144860	21012	120385	85383	98765	42008	84952	58334	
2,0	171466	35561	151509	105457	135266	75680	123209	69115	
3,0	126933	38829	116589	111680	109113	68442	102894	78005	
4,5	128657	44772	121080	94857	116312	85835	113089	74509	
6,0	119236	62943	114120	141549	108652	128713	101765	101947	
7,0	221251	94341	210919	216144	201561	204081	194274	173654	
8,0	254937	99613	233162	229561	214923	211059	199868	185962	
10,0	213738	95094	204313	192839	196435	176718	187102	174905	

Enerji	C50	C50B5		C50B10		C50B15		C50B20	
(MeV)	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	GEANT4	FLUKA	
1,1	9096	20663	8633	19238	8245	18652	7886	14128	
1,5	176356	93057	146150	79976	128554	67802	99042	53458	
2,0	168441	99462	150257	90474	134396	78507	121874	63502	
3,0	115660	97671	107579	91232	101567	84286	96030	72995	
4,5	106915	82535	103300	79946	101378	77358	98138	70913	
6,0	117067	129738	109065	124909	103585	111065	97423	97002	
7,0	192406	204118	184159	196026	176422	189124	169029	170093	
8,0	226937	209963	209196	195498	193528	194065	179805	183402	
10,0	191601	195861	183800	188867	175086	181134	168332	173445	

Tablo 4. 69. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 25 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayısı

Şekil 4.67. %50 bronz ve farklı oranlarda B₄C katkılı 25 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi

Şekil 4.68. %50 pirinç ve farklı oranlarda B₄C katkılı 25 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi

Şekil 4.69. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı 25 cm kalınlığındaki beton numunelerden farklı enerjilerde geçen nötron sayılarının değişimi

Şekil 4.70. %50 bronz ve farklı oranlarda B₄C katkılı beton numunelerin 1,1 MeV nötron enerjisinde farklı kalınlıklarda geçen nötron sayılarının değişimi

Şekil 4.71. %50 pirinç ve farklı oranlarda B₄C katkılı beton numunelerin 1,1 MeV nötron enerjisinde farklı kalınlıklarda göre geçen nötron sayılarının değişimi

Şekil 4.72. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı beton numunelerin 1,1 MeV nötron enerjisinde farklı kalınlıklarda geçen nötron sayılarının değişimi

Şekil 4.73. %50 bronz ve farklı oranlarda B₄C katkılı beton numunelerin 4,5 MeV nötron enerjisinde farklı kalınlıklarda geçen nötron sayılarının değişimi

Şekil 4.74. %50 pirinç ve farklı oranlarda B₄C katkılı beton numunelerin 4,5 MeV nötron enerjisinde farklı kalınlıklarda geçen nötron sayılarının değişimi

Şekil 4.75. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı beton numunelerin 4,5 MeV nötron enerjisinde farklı kalınlıklarda geçen nötron sayılarının değişimi

Şekil 4.76. %50 bronz ve farklı oranlarda B₄C katkılı beton numunelerin 7 MeV nötron enerjisinde farklı kalınlıklarda geçen nötron sayılarının değişimi

Şekil 4.77. %50 pirinç ve farklı oranlarda B₄C katkılı beton numunelerin 7 MeV nötron enerjisinde farklı enerjilerde geçen nötron sayılarının değişimi

Şekil 4.78. %50 paslanmaz çelik ve farklı oranlarda B₄C katkılı beton numunelerin 7 MeV nötron enerjisinde farklı kalınlıklarda geçen nötron sayılarının değişimi

Çalışmada kullanılan simülasyon programları aracılığı ile B₄C katkılı numunelerin hesaplanan toplam makroskobik tesir kesiti sonuçları aşağıda verilmiştir. 1 cm numune kalınlığında 4,5 MeV nötron enerjisinde 10 milyon nötron gönderilerek hesaplamalar gerçekleştirilmiştir. Toplam makroskobik tesir kesiti, etkileşme olaylarının meydana gelmesi ihtimallerinin toplam ölçüsüdür ve geçen nötron sayısı ile ilişkilendirilir.

Nötronlar için OSY değeri ise GEANT4 yardımı ile hesaplanmıştır. OSY değeri için elde edilen bulgular Tablo 4.70-4.72'de verilmiştir. Bunun dışında hızlı nötron uzaklaştırma tesir kesiti sonuçları, teorik olarak hesaplanmıştır. Bunun için beton numuneler içerisindeki elementlerin kısmi yoğunlukları ve kütle uzaklaştırma tesir kesitlerinden yararlanarak ve karışım kuralı kullanılarak hızlı nötron uzaklaştırma tesir kesiti belirlenmiştir. Sonuçlar Tablo 4.73-4.75'da listelenmiş, buna göre çizilen grafikler Şekil 4.79-4.81'de verilmiştir.

Numune Toplam Makroskobik Tesir Kesidi (cm ⁻¹)		akroskobik sidi (cm ⁻¹)	OSY (mm)
	GEANT4	FLUKA	GEANT4
B50B5	2,0325	2,0320	$4,9136 \text{ mm} \pm 0,2884 \text{ mm}$
B50B10	2,0331	2,0328	$4,9125 \text{ mm} \pm 0,2883 \text{ mm}$
B50B15	2,0344	2,0343	$4,9118 \text{ mm} \pm 0,2885 \text{ mm}$
B50B20	2,0347	2,0345	$4,9110 \text{ mm} \pm 0,2885 \text{ mm}$
B50	2,0316	2,0315	$4,9187 \text{ mm} \pm 0,2885 \text{ mm}$
SB	2,0290	2,0287	$4,9286 \text{ mm} \pm 0,2887 \text{ mm}$

Tablo 4. 70. %50 bronz katkılı ve farklı oranlarda B₄C katkılı beton numunelerin 4,5 MeV nötron enerjisi ve 1 cm kalınlık değerinde toplam makroskobik tesir kesitleri ve OSY değerleri

Tablo 4. 71. %50 pirinç katkılı ve farklı oranlarda B₄C katkılı beton numunelerin 4,5 MeV nötron enerjisi ve 1 cm kalınlık değerinde toplam makroskobik tesir kesitleri ve OSY değerleri

Numune	Toplam Makroskobik Tesir Kesidi (cm ⁻¹)		OSY (mm)
	GEANT4	FLUKA	GEANT4
P50B5	2,0343	2,0337	$4,9152 \text{ mm} \pm 0,2882 \text{ mm}$
P50B10	2,0346	2,0342	$4,9140 \text{ mm} \pm 0,2885 \text{ mm}$
P50B15	2,0361	2,0357	$4,9113 \text{ mm} \pm 0,2884 \text{ mm}$
P50B20	2,0367	2,0362	$4,9089 \text{ mm} \pm 0,2885 \text{ mm}$
P50	2,0324	2,0322	$4,9166 \text{ mm} \pm 0,2885 \text{ mm}$
SB	2,0290	2,0287	4,9286 mm ± 0,2887 mm

Tablo 4. 72. %50 paslanmaz çelik katkılı ve farklı oranlarda B₄C katkılı beton numunelerin 4,5 MeV nötron enerjisi ve 1 cm kalınlık değerinde toplam makroskobik tesir kesitleri ve OSY değerleri

Numune	Toplam M Tesir Kes	akroskobik idi (cm ⁻¹)	OSY (mm)
	GEANT4	FLUKA	GEANT4
C50B5	2,0364	2,0362	$4,9107 \text{ mm} \pm 0,2886 \text{ mm}$
C50B10	2,0365	2,0365	$4,9083 \text{ mm} \pm 0,2883 \text{ mm}$
C50B15	2,0368	2,0370	$4,9104 \text{ mm} \pm 0,2883 \text{ mm}$
C50B20	2,0386	2,0389	$4,9037 \text{ mm} \pm 0,2885 \text{ mm}$
C50	2,0345	2,0343	$4,9152 \text{ mm} \pm 0,2885 \text{ mm}$
SB	2,0290	2,0287	$4,9286 \text{ mm} \pm 0,2887 \text{ mm}$

	B50	B5	B50E	B10	B50H	B15	B50H	320
Numune	(ρ=2,328	9 g/cm^3)	(ρ=2,233	4 g/cm^3)	(ρ=2,175	1 g/cm^3)	(ρ=2,053	2 g/cm^3)
Element	Kısmi	\sum_{R}	Kısmi	\sum_{R}	Kısmi	\sum_{R}	Kısmi	\sum_{R}
	Yoğunluk		Yoğunluk		Yoğunluk		Yoğunluk	
0	0,5366	0,0217	0,4978	0,0202	0,4700	0,0190	0,4306	0,0174
Na	0,0098	0,0003	0,0092	0,0003	0,0087	0,0003	0,0078	0,0003
Mg	0,0149	0,0005	0,0138	0,0005	0,0131	0,0004	0,0121	0,0004
Al	0,0452	0,0013	0,0420	0,0012	0,0396	0,0012	0,0363	0,0011
Si	0,1425	0,0042	0,1333	0,0039	0,1259	0,0037	0,1154	0,0034
S	0,0172	0,0005	0,0163	0,0005	0,0152	0,0004	0,0140	0,0004
Κ	0,0100	0,0002	0,0094	0,0002	0,0089	0,0002	0,0080	0,0002
Ca	0,6917	0,0168	0,6421	0,0156	0,6069	0,0147	0,5558	0,0135
Fe	0,0345	0,0007	0,0322	0,0007	0,0302	0,0006	0,0277	0,0006
Cu	0,6386	0,0119	0,5932	0,0110	0,5603	0,0104	0,5133	0,0095
Sn	0,1127	0,0015	0,1047	0,0014	0,0990	0,0014	0,0905	0,0012
В	0,0589	0,0034	0,1092	0,0063	0,1549	0,0089	0,1891	0,0109
С	0,0163	0,0008	0,0304	0,0015	0,0431	0,0022	0,0526	0,0026
Toplam	2,3289	0,0640	2,2334	0,0633	2,1751	0,0635	2,0532	0,0616

Tablo 4. 73. %50 bronz ve farklı oranlar B₄C katkısı yapılmış beton numunelerin içeriğindeki elementlerin hızlı nötron uzaklaştırma tesir kesiti ve numunenin toplam hızlı nötron uzaklaştırma tesir kesiti değeri (Σ_R , cm⁻¹)

Tablo 4. 74. %50 pirinç ve farklı oranlar B₄C katkısı yapılmış beton numunelerin içeriğindeki elementlerin hızlı nötron uzaklaştırma tesir kesiti ve numunenin toplam hızlı nötron uzaklaştırma tesir kesiti değeri (\sum_{R} , cm⁻¹)

-	P50B5		P50B10		P50B15		P50B20	
Numune	$(\rho = 2,3619 \text{ g/cm}^3)$		(ρ=2,245	7 g/cm^3	$(\rho = 2,2159 \text{ g/cm}^3)$		$(\rho = 2,1555 \text{ g/cm}^3)$	
Element	Kısmi	\sum_{R}	Kısmi	\sum_{R}	Kısmi	\sum_{R}	Kısmi	\sum_{R}
	Yoğunluk		Yoğunluk		Yoğunluk		Yoğunluk	
0	0,5442	0,0220	0,5006	0,0203	0,4789	0,0194	0,4520	0,0183
Na	0,0099	0,0003	0,0092	0,0003	0,0089	0,0003	0,0082	0,0003
Mg	0,0151	0,0005	0,0139	0,0005	0,0133	0,0004	0,0127	0,0004
Al	0,0458	0,0013	0,0422	0,0012	0,0403	0,0012	0,0382	0,0011
Si	0,1445	0,0043	0,1341	0,0040	0,1283	0,0038	0,1211	0,0036
S	0,0175	0,0005	0,0164	0,0005	0,0155	0,0004	0,0147	0,0004
Κ	0,0102	0,0003	0,0094	0,0002	0,0091	0,0002	0,0084	0,0002
Ca	0,7015	0,0170	0,6456	0,0157	0,6182	0,0150	0,5835	0,0142
Fe	0,0350	0,0007	0,0323	0,0007	0,0308	0,0007	0,0291	0,0006
Cu	0,5333	0,0099	0,4914	0,0091	0,4700	0,0087	0,4438	0,0083
Zn	0,2284	0,0042	0,2106	0,0039	0,2016	0,0037	0,1901	0,0035
В	0,0598	0,0034	0,1098	0,0063	0,1578	0,0091	0,1985	0,0114
С	0,0165	0,0008	0,0305	0,0015	0,0567	0,0028	0,0552	0,0028
Toplam	2.3619	0.0654	2.2457	0.0642	2.2159	0.0658	2.1555	0.0650

	C50]	B5	C50H	C50B10		C50B15		C50B20	
Numune	(ρ=2,298	5 g/cm^3)	(ρ=2,211	3 g/cm^3)	(ρ=2,136	9 g/cm^3)	(ρ=2,035	5 g/cm^3)	
Element	Kısmi	\sum_{R}	Kısmi	\sum_{R}	Kısmi	\sum_{R}	Kısmi	\sum_{R}	
	Yoğunluk		Yoğunluk		Yoğunluk		Yoğunluk		
Ο	0,5296	0,0214	0,4929	0,0200	0,4618	0,0187	0,4268	0,0173	
Na	0,0097	0,0003	0,0091	0,0003	0,0085	0,0003	0,0077	0,0003	
Mg	0,0147	0,0005	0,0137	0,0005	0,0128	0,0004	0,0120	0,0004	
Al	0,0446	0,0013	0,0416	0,0012	0,0389	0,0011	0,0360	0,0011	
Si	0,1407	0,0041	0,1320	0,0039	0,1237	0,0036	0,1144	0,0034	
S	0,0170	0,0005	0,0161	0,0004	0,0150	0,0004	0,0138	0,0004	
Κ	0,0099	0,0002	0,0093	0,0002	0,0085	0,0002	0,0079	0,0002	
Ca	0,6827	0,0166	0,6357	0,0154	0,5962	0,0145	0,5510	0,0134	
Fe	0,5532	0,0118	0,5155	0,0110	0,4832	0,0103	0,4466	0,0096	
Cr	0,1260	0,0026	0,1174	0,0024	0,1098	0,0023	0,1018	0,0021	
Ni	0,0816	0,0016	0,0761	0,0014	0,0712	0,0014	0,0660	0,0013	
В	0,0582	0,0033	0,1081	0,0062	0,1521	0,0087	0,1875	0,0108	
С	0,0161	0,0008	0,0301	0,0015	0,0423	0,0021	0,0521	0,0026	
Mo	0,0147	0,0002	0,0139	0,0002	0,0128	0,0002	0,0120	0,0002	
Toplam	2,2985	0,0654	2,2115	0,0648	2,1369	0,0644	2,0357	0,0629	

Tablo 4. 75. %50 paslanmaz çelik ve farklı oranlar B₄C katkısı yapılmış beton numunelerin içeriğindeki elementlerin hızlı nötron uzaklaştırma tesir kesiti ve numunenin toplam hızlı nötron uzaklaştırma tesir kesiti değeri (\sum_{R} , cm⁻¹)

Şekil 4.79. %50 bronz ve farklı oranlarda B₄C ile katkılanmış beton numunelerin hızlı nötron uzaklaştırma tesir kesitinin (\sum_{R}) karşılaştırmalı grafiği

Şekil 4.80. %50 pirinç ve farklı oranlarda B₄C ile katkılanmış beton numunelerin hızlı nötron uzaklaştırma tesir kesitinin (\sum_{R}) karşılaştırmalı grafiği

Şekil 4.81. %50 paslanmaz çelik ve farklı oranlarda B₄C ile katkılanmış beton numunelerin hızlı nötron uzaklaştırma tesir kesitinin (\sum_{R}) karşılaştırmalı grafiği

4.7. Üretilen Numunelerin Mekanik Özelliklerine Ait Araştırma Bulguları

Üretilen bronz, pirinç, paslanmaz çelik veya B₄C katkılı beton numunelerin bazı mekanik özellikleri de incelenmiştir. Bu amaçla yapılan çalışmalar üretilen betonun kalitesini elirlemeye yöneliktir. Üretilen 5x5x5 cm³ ebatında küp şeklinde olan numulerin basınç dayanımı, ultra ses geçiş hızı (UPV) ve Schmidt yüzey sertliği parametreleri belirlenmiştir. Her bir numuneden 3'er adet üretilmiştir. Daha tutarlı sonuçlar elde etmek adına incelenen parametrelerde 3 numunenin aritmetik ortalama sonucu alınmıştır. Basınç dayanım testleri basınç pres cihazı gerçekleştilmiştir. Ultra ses geçiş hızı (UPV) deneylerinde okunan zaman değeri eşitlik (2.38)'de yerine konarak UPV değeri hesaplanmıştır. Yine burada herbir numune için ortalama değer alınmıştır. Scdmidt yüzey sertliği deneyi ise ASTM 2001 standartlarına göre çalışan Schmidt çekici gerçekleştirilmiştir. Elde edilen bulgular Tablo 4.76'da listelenmiştir.

Numune	Basınç Dayanımı (MPa)	Ultra Ses Geçiş Hızı (km/sa)	Yüzey Sertliği
B10	53,76	3,21	19,67
B20	66,96	3,30	20,33
B30	71,40	3,44	19,40
B40	78,31	3,40	20,33
B50	76,84	3,48	20,67
P10	61,63	3,08	20,00
P20	65,93	3,14	18,43
P30	69,98	3,16	18,67
P40	71,41	3,28	18,93
P50	71,58	3,36	19,33
C10	21,00	2,48	19,67
C20	29,00	2,73	21,00
C30	31,13	2,88	21,67
C40	42,00	3,04	21,33
C50	48,00	3,18	22,33
B50B5	55,74	3,37	18,33
B50B10	48,27	3,08	19,67
B50B15	47,28	2,93	20,67
B50B20	37,25	2,78	19,50
P50B5	47,05	3,25	19,33
P50B10	28,84	2,76	18,67
P50B15	10,82	2,73	17,67
P50B20	7,23	2,38	16,67
C50B5	33,84	3,24	17,00
C50B10	27,84	3,08	16,67
C50B15	19,75	2,59	16,67
C50B20	16,99	2,57	15,43
SB	36,43	3,16	14,66

Tablo 4. 76. Üretilen tüm numunelerin ortalama basınç dayanımı, ultra ses geçiş hızı ve Schmidt yüzey sertliği için elde edilen değerler

Şekil 4.82-4.87'de bazı basınç dayanımı grafikleri verilmiştir.

Şekil 4.82. Farklı oranlarda bronz katkılı numunelerin basınç dayanım grafiği

Şekil 4.83. Farklı oranlarda pirinç katkılı numunelerin basınç dayanım grafiği

Şekil 4.84. Farklı oranlarda paslanmaz çelik katkılı numunelerin basınç dayanım grafiği

Şekil 4.85. Farklı oranlarda bronz katkılı numunelerin basınç dayanımının ultra ses geçiş hızı ve yüzey sertliğine karşı grafiği

Şekil 4.86. Farklı oranlarda pirinç katkılı numunelerin basınç dayanımının ultra ses geçiş hızı ve yüzey sertliğine karşı grafiği

Şekil 4.87 Farklı oranlarda paslanmaz çelik katkılı numunelerin basınç dayanımının ultra ses geçiş hızı ve yüzey sertliğine karşı grafiği

5. SONUÇLAR VE ÖNERİLER

Bu tez çalışmasında %10, %20, %30, %40 ve %50 bronz, pirinç, paslanmaz çelik veya bunlara ek olarak %5, %10, %15 ve %20 B₄C katkılı beton numunelerin gama radyasyonu azaltma performanslarını incelemek için kütle azaltma katsayısı, lineer azaltma katsayısı, yarı kalınlık değeri, onda-bir kalınlık değeri, ortalama serbest yol, etkin atom numarası ve radyasyon koruma verimi olmak üzere 7 adet parametre belirlenmiştir. Deneysel çalışmalar ²²Na, ⁶⁰Co, ¹³³Ba, ¹³⁷Cs ve ²⁴¹Am radyoaktif izotop kaynağından yayımlanan 59,5-1332,5 keV aralığındaki 11 farklı foton enerji değerinde HPGe dedektör kullanılarak gerçekleştirilmiştir. Seçilen enerji değerleri Tablo 3.4'te, deney geometrisi ise ayrıntılı olarak Şekil 3.6'da gösterilmiştir. Deneysel olarak elde edilen sonuçlar teorik(WinXCOM), GEANT4 ve FLUKA aracılığı ile edilen sonuçlar ile karşılaştırılmış ve aralarında %0,19-10,74 arasında değişen uyum olduğu görülmüştür. Gama radyasyonu belirlenen parametrelere ilişkin sonuçlar Tablo 4.1-4.42, grafikler ise Şekil 4.1-4.42'de verilmişir.

Nötron radyasyonu zırhlama çalışmalarında %50 bronz, pirinç veya paslanmaz çelik katkılanmış beton numunelere %5, %10, %15 ve %20 oranında B₄C katkısı yapılmış beton numuneler incelenmiştir. Nötron zırhlama sadece GEANT4 ve FLUKA simülasyon paketleri kullanılmıştır. Bu kısımda numuneden geçen nötron sayısı 1,1, 1,5, 2, 3, 4,5, 6, 7 ve 10 MeV enerji ve 1, 2,5, 5, 7, 10, 13, 16, 20 ve 25 cm numune kalınlıklarında ayrı ayrı incelenmiştir. 4,5 MeV enerji değerinde ve 1 cm numune kalınlığında toplam makroskobik tesir kesiti ve ortalama serbest yol değerleri de belirlenmiştir. Bunun yanında B₄C katkılı olarak üretilen bütün numunelerin hızlı nötron uzaklaştırma tesir kesitleri belirlenmiştir. Nötron radyasyonu zırhlama çalışmalarına ilişkin elde edilen bulgular Tablo 4.43 - 4.75'de, grafikler ise Şekil 4.43 - 4.81'de sunulmuştur.

Ayrıca, üretilen beton numunelerin kullanılabilirliğini incelemek için basınç dayanımı, ultra ses geçiş hızı ve yüzey sertliği gibi mekanik özellikleri de belirlenmiştir. Bu deneyler sonrasında elde edilen veriler tablo ve grafikler Tablo 4.76'da ve Şekil 4.82-4.87'da sunulmuştur.

Gama radyasyonu zırhlamada kullanılan malzemenin yoğunluğundan bağımsız olan kütle azaltma katsayısı, radyasyon zırhlamada birincil göstergelerden biridir. Farklı oranlarda bronz, pirinç, paslanmaz çelik veya B₄C katkılı numunelerin deneysel, teorik, GEANT4 ve FLUKA yardımı ile hesaplanan kütle azaltma katsayılarına ilişkin sonuçlar Tablo 4.1-4.6'da, grafikler de Şekil 4.1-4.6'da verilmiştir. Deneysel, teorik, GEANT4, FLUKA yöntemleri ile belirlenen kütle azaltma katsayısı arasındaki farklılık <%10,35'tir.

Elde edilen bulgular incelendiğinde hedef numune üzerine gönderilen fotonun enerjisi arttıkça ile kütle azaltma katsayısının azaldığı, saf betona ikame edilen bronz, pirinç veya paslanmaz çelik alaşımlarının katkı oranı artması ile kütle azaltma katsayılarının arttığı gözlemlenmiştir. Ancak, % 50 alaşım içerikli numunelere farklı oranlarda B₄C ilavesinin yapılması ile kütle azaltma katsayısının azaldığı görülmüştür. Bu azalmanın artan B₄C ile arttığı belirlenmiştir.

Tablo ve grafikler incelendiğinde kütle azaltma katsayısı bakımından bütün numune serilerinde en iyi sonucun düşük enerjili 59,5 keV'de olduğu görülmektedir. Düşük enerjilerde kütle azaltma katsayısının çok hızlı düştüğü gözlenmiştir. Bu keskin azalmanın nedeni düşük enerji bölgesinde fotoelektrik tesir kesitinin baskın olmasıdır. Orta enerji bölgesinden sonra keskin bir azalış söz konusu değildir. Bu enerji bölgesinde kütle azaltma katsayısında çok hızlı olmayan bir azalma söz konusudur. Bu enerji bölgesinde Compton saçılması tesir kesiti etkindir. Yüksek enerji bölgesinde yine önemli bir değişim söz konusu değildir. Bu enerji bölgesinde çot hızlı olmayan bir azalma söz konusudur.

Düşük enerji bölgelerinde baskın fotoelektrik tesir kesiti değeri Z^{4-5} (Z, atom numarası) ve $E^{-3,5}$ (E, foton enerjisi) ile değişir. Orta enerji bölgesinde baskın Compton saçılması tesir kesiti değeri Z ve E^{-1} ile değişirken, yüksek enerji bölgesinde baskın çift oluşum tesir kesiti değeri Z^2 ve E ile değişmektedir. Bu bağımlılıklar düşük, orta ve yüksek enerji bölgelerindeki kütle azaltma katsayısındaki değişimleri izah etmektedir.

Çalışılan bütün numuneler içerisinde 59,5 keV enerjide, kütle azaltma katsayısı farklı oranlarda bronz katkılı numuneler arasında en yüksek sonucu veren numune B50 kodlu numunedir. Bu enerjide B50 numunesi SB ile karşılaştırıldığında % 128,46 oranında bir iyileşme gözükmektedir. Bu enerji değerinde farklı oranlarda pirinç katkılı numunelerde

ise en yüksek sonucu veren P50 kodlu numunedir. 59,5 keV enerjide P50 kodlu numune SB ile karşılaştırıldığında %79,86 oranında bir iyileşme vardır. 59,5 keV enerji değerinde farklı oranlarda paslanmaz çelik alaşımı ile katkılanmış numuneler incelendiğinde en yüksek sonucu veren C50 numunesidir. SB ile karşılaştırıldığında ise %57,71 oranında bir artış söz konusudur. Benzer karşılaştırma 81 keV'de SB ile yapıldığında B50 için % 81,9, P50 için %48,8, C50 için ise %31,2'lik bir iyileşme söz konusudur. Buradan bronz katkılı numunelerin gama radyasyonu zırhlaması için en uygun katkılı beton olduğu sonucuna varılabilir.

B50, P50 ve C50 kodlu numunelere %5, %10, %15 ve % 20 B₄C ilave edilmesi ile üretilen beton numunelerin kütle azaltma katsayılarında düşüş gözlemlenmiştir. % 20 B₄C katkılı B50B20 numunesi B50 ile karşılaştırıldığında %18,29'luk, %20 B₄C katkılı P50B20 numunesi P50 ile kıyaslandığında %9,61 oranında ve %20 B₄C katkılı C50B20 numunesi C50 ile karşılaştırıldığında %11,58'lik bir düşüş görülmüştür. Bu sonuçlara göre B₄C oranının artması çalışılan numunelerde gama radyasyonu zırhlama etkisini azaltmaktadır. Bu düşüşe neden olarak, kullanılan alaşımlara göre B₄C'ün yoğunluğunun az olması gösterilebilir. Katkılı beton numuneleri kütle azaltma katsayıları yönünden sıralarsak bronz serisi > pirinç serisi > paslanmaz çelik serisi olarak sıralanmaktadır. Aynı sıralama B₄C katkılı numuneler içinde yapılabilir.

Kütle azaltma katsayısı yardımı ile belirlenen ilk önemli parametre lineer azaltma katsayısıdır. Yapılan çalışmada lineer azaltma katsayısı, kütle azaltma katsayısının malzemenin yoğunluğu ile çarpımı sonucu bulunmuştur. Bu yüzden malzemenin yoğunluğu kütle azaltma katsayısının aksine gama radyasyonu zırhlamasını etkileyen bir etkendir. Lineer azaltma katsayısı için elde edilen bulgular Tablo 4.7-4.12'de ve Şekil 4.7-4.12'de verilmiştir. Elde edilen bulgular incelendiğinde hedef numune üzerine gönderilen foton enerjisinin artması ile lineer azaltma katsayısının azaldığı ve SB numunesine eklenen bronz, pirinç veya paslanmaz çelik katkısının oranının artması ile lineer azaltma katsayısının aztığı gözlemlenmiştir. Ancak %50 alaşım içerikli numunelere farklı oranlarda B₄C ilavesinin yapılması ile lineer azaltma katsayısının azaldığı görülmüştür. Hedef üzerine gönderilen foton enerjisindeki artış ile lineer azaltma katsayısının azaltıma katsayısının azaltığı görülmektedir. Orta ve yüksek enerji bölgelerinde ise düşüş daha yavaştır. Bu parametrede de kütle azaltma katsayısında olduğu gibi fotoelektrik etki,

Compton saçılması ve çift oluşumu bahsedilen enerji bölgelerinde etkindir. Elde edilen lineer azaltma katsayısı sonuçlarına göre gama radyasyonu zırhlaması için en iyi sonucun bronz katkılı beton numuneler olduğu tespit edilmiştir. Bütün numune serilerinde 59,5 keV foton enerjisinde en yüksek lineer azaltma katsayısına ulaşılmıştır. Dolayısı ile düşük enerjilerde çalışılan numunelerin daha iyi gama radyasyonunu zırhladığı sonucuna varılmıştır.

Bir sonraki aşamada yarı kalınlık değeri (YKD), onda-bir kalınlık değeri (OKD) ve ortalama serbest yol (OSY) değerleri belirlenmiştir. Bu üç parametre de lineer azaltma katsayısı yardımı ile hesaplanmıştır. Yarı kalınlık değeri, ilk baştaki radyasyon şiddetini yarıya düşürecek malzeme kalınlığını, onda-bir kalınlık değeri başlangıçtaki radyasyon şidderinin %10'a düştüğü kalınlığı ve ortalama serbest yol ise başlangıçtaki radyasyon şiddetinin %36,8'lik miktarının geçebildiği malzeme kalınlığını ifade etmektedir. Bu üç parametre ile lineer azaltma katsayısı arasında ters orantı vardır. Elde edilen parametre değerlerinin küçük olması, malzemenin radyasyon zırhlama açısından kullanılabilir olduğunu ifade etmektedir. YKD için elde edilen bulgular Tablo 4.13-4.18 ve Şekil 4.13-4.18'de, OKD için Tablo 4.19-4.24 ve Şekil 4.19-4.24'te, OSY değerleri için Tablo 4.25-4.30 ve Şekil 4.25-4.30'da sunulmuştur.

YKD, OKD ve OSY için elde edilen bulgular incelendiğinde foton enerjisinin artması ile her üç parametrenin değeri de artmıştır. Bir başka deyişle malzeme üzerine gönderilen foton enerjisi artıkça radyasyon zırhlama için kullanılacak malzemenin kalınlığını artırmak gerekmektedir. Elde edilen sonuçlar incelendiğinde, YKD değeri açısından en iyi sonucun B50 numunesinde olduğu gözlemlenmiştir. 59,5 keV enerji değerinde SB numunesinin YKD değeri 0,7886 cm iken B50 numunesinin YKD değeri 0,2589 cm, P50 numunesinin YKD değeri 0,3420 cm ve C50 numunesinin YKD değeri 0,4365 cm olarak belirlenmiştir. En yüksek enerji olan 1332,5 keV enerji değerinde ise B50 numunesinin YKD değeri 5,0582 cm, P50 numunesinin 5,2079 cm ve C50 numunesinin ki ise 5,5110 cm olarak belirlenmiştir. Bu sonuçlara göre enerji değeri artıkça YKD değeri artmaktadır. En iyi sonucun B50 numunesinde olduğu açıktır. Bu sonuçlara göre kıyaslama yapılırsa bronz katkılı numuneler radyasyon zırhlama malzemesi olarak diğer alaşımlarla katkılanan numunelere göre daha iyi sonuçlar vermektedir. Benzer bir karşılaştırma OKD değerleri için yapılabilir. 59,5 keV enerjide OKD değeri SB için 2,6196 cm iken B50 için 0,8599 cm, P50 için 1,1360 cm ve C50 için 1,4500 cm olarak belirlenmiştir. 81,0 keV enerji değerinde SB için 4,1963 cm iken B50 için 1,7302 cm, P50 için 2,1924 cm, C50 için 2,7747 cm olarak elde edilmiştir. OSY değerleri kendi içinde karşılaştırıldığında en olumlu sonuçların bütün enerji değerlerinde bronz serisine ait olduğu gözlemlenmiştir.

59,5 keV enerji değerinde OSY değeri SB numunesi için 1,1377 cm iken, B50 numunesi için 0,3734 cm, P50 için 0,4934 cm ve C50 için 0,6297 cm olarak gerçekleşmiştir.

B50, P50 ve C50 numunelerine B₄C katkısının yapılması ise YKD, OKD ve OSY değerlerini olumsuz etkilemektedir. 59,5 keV enerjide YKD değeri B50 numunesi için 0,2589 cm iken, B50B5 için 0,2822 cm, P50 için 0,3420 cm iken P50B5 için 0,3538 cm, C50 için 0,4365 cm iken C50B5 için 0,4393 cm olarak gerçekleşmiştir. 59,5 keV'de YKD sonucu B50 için 0,2589 cm iken B50B20 için 0,3257 cm, P50 için 0,3420 cm iken P50B20 için 0,4352 cm ve C50 için 0,4365 cm iken C50B20 için 0,5394 cm olarak belirlenmiştir. Diğer bir deyişle B₄C katkısı gama radyasyonu zırhlama için gerekli olan malzemenin kalınlık değerini artırmaktadır. Buna neden olarak B₄C'ün yoğunluğunun kullanılan alaşımlara göre düşük olması gösterilebilir. YKD, OKD ve OSY parametrelerinin deneysel ile teorik, GEANT4 ve FLUKA sonuçları arasında sırasıyla %0,54-6,45, %0,41-7,13, %0,42-7,38 oranında farklılık bulunmaktadır. Bu farklılık oranları da deneysel belirsizlikler içinde kalmaktadır.

Bir diğer onemli parametre etkin atom numarası (Z_{etk}) değeridir. Elde edilen kütle azaltma katsayıları kullanılarak bronz, pirinç, paslanmaz çelik ve B₄C katkılı beton numunelerin etkin atom numaraları belirlenmiştir. Tablo 4.31-4.36 ve Şekil 4.31-4.36'da Z_{etk} değerleri sunulmuştur. Foton enerjisi artıkça Z_{etk} azaldığı ancak katkı miktarı artıkça Z_{etk} değerlerinin yükseldiği gözlemlenmiştir. 59,5 keV'de Z_{etk} değeri SB numunesi için 15,7775 iken B10 numunesi için bu değer 18,9367 olarak belirlenmiştir. Sonuçlar kıyaslandığında %20,22 oranında bir artış olmuştur. B50 numunesine ait elde edilen Z_{etk} değeri, SB numunesi ile karşılaştırıldığında %57,15'lik bir artış söz konusudur. P10 numunesinin Zetk değeri incelendiğinde benzer bir sonuç vardır ve artış oranı %16,6'dır. P50 numunesi SB ile karşılaştırıldığında %35,11'lik bir artış söz konusudur. C10
numunesi için de aynı şeyden bahsetmek mümkündür. Yine 59,5 keV'de artış oranı %3,61 olarak belirlenmiştir. C50 numunesinin Z_{etk} değeri SB ile kıyaslandığında ise %26,05 oranında arttığı belirlenmiştir.

Eğer radyasyon zırhlamada kullanılacak olan malzemeyi Z_{etk} 'ne göre belirleyecek olursak, en iyi gama radyasyonu zırhlama özelliğine sahip numuneler bronz katkılı olan numunelerdir. Bunu sırası ile pirinç ve paslanmaz çelik katkılı numuneler izlemektedir. Sonuç olarak daha büyük Z_{etk} değerine sahip olan zırhlama materyalinin fotonun enerjisini azaltma ihtimali düşük Z_{etk} değerine sahip olan materyale göre daha yüksek olduğu söylenebilir.

%50 alaşım içerikli numunelere %5-10-15-20 oranında B₄C eklendiğinde ise Z_{etk} değerinde düşüş gözlenmektedir. Çalışılan en yüksek enerji olan 1332,5 keV enerjide Z_{etk} değeri B50B5 numunesinde 14,4755, B50B10'da 13,7337, B50B15'te 13,1011, B50B20 numunesinde ise 12,5551 olarak belirlenmiştir. 59,5 keV'de ise P50B5'te 21,1170, P50B10'da 20,7698, P50B15'te 20,3859 ve P50B20 numunesinde ise Z_{etk} değeri 19,5730 olarak belirlenmiştir. 356,02 keV enerjide C50B5 numunesi için 14,3353, C50B10 numunesinde ise 13,6364, C50B15 numunesi için 13,0354 ve C50B20 numunesi için 12,5129 olarak belirlenmiştir. B₄C katkılı numunelerde Z_{etk} değerinin azalması yoğunluğa ve numunenin bileşiminde yer alan elementlerin kütle azaltma katsayılarına bağlanabilir.

Radyasyon zırhlamada en önemli parametrelerden biri radyasyon koruma verimliliğidir. Tablo 4.37-4.42 ve Şekil 4.37-4.42'de bu parametreye ait sonuçlar sunulmuştur. 81 keV'de SB numunesinde radyasyon koruma verimi %46,53 iken B10 numunesinde %56,83, B50 numunesinde bu oran %78,12'ye çıkmaktadır. Benzer bir karşılaştırma pirinç alaşımı katkılı numuneler için yapıldığında 81 keV'de SB için radyasyon koruma verimliliği % 46,83 iken P10 numunesinde %52,22, P50 numunesinde %70,59'a yükselmiştir. Paslanmaz çelik alaşımı katkılı numunelerde de aynı durumdan bahsedebiliriz. 81 keV enerji değerinde C10 numunesinin koruma verimi %49,06 iken C50 numunesinde %58,66 olarak gerçekleşmiştir. Alaşım katkısı yapılmış beton numunelerde radyasyon koruma verimi değerlerinin de arttığı gözlemlenmiştir. Tablo ve Şekil 4.37-4.42 incelendiğinde radyasyon koruma verimi açısından en yüksek sonuçların bronz katkısı yapılmış numunelerde olduğu açıktır. %50 alaşım içerikli numunelere B4C katkısının yapılması ile radyasyon koruma veriminde düşüşler gözlemlenmiştir. B₄C katkısının yapılması numunelerin yoğunluğunu azaltmıştır. Bu nedenle B₄C katkısı yapılan numunelerin radyasyon koruma veriminde azalma olduğu söylenebilir.

Üretilen beton numunelerin gama radyasyon zırhlama yetenekleri dışında B₄C katkılı numunelerin nötron radyasyonu zırhlama parametreleri de incelenmiştir. Elde edilen bulgulara göre GEANT4 ve FLUKA yardımı ile belirlenen numuneden geçen nötron sayıları arasında en iyi sonuçların B₄C miktarının artırıldığı numunelerde olduğu gözlemlenmiştir. GEANT4'e göre 1,1 MeV enerji değerinde ve 1 cm numune kalınlığında B50B5 numunesinden geçen nötron sayısı %75,49 iken, B50B20 numunesinden geçen nötron sayısı %75,14, P50B5 numunesinden %75,52 iken P50B20 numunesinden geçen nötron sayısı %75,15, C50B5 numunesinden geçen nötron sayısı %75,57 iken C50B20 numunesinden %75,19 olarak gerçekleşmiştir. FLUKA'ya göre 1,1 MeV enerji değerinde geçen nötron sayısı B50B20'de %74,87, P50B20'de %74,16 değerinde olmuştur. 1,1 MeV ve 1 cm kalınlık değerinde C50B20'de geçen nötron sayısı %77,49 olarak gerçekleşmiştir.

GEANT4'e göre 4,5 MeV enerji değerinde ve 1 cm numune kalınlığında B50B20 numunesinde %83,18, P50B20'de %83,68 ve C50B20'de %82,68 oranında nötron geçişi gözlemlenmiştir. FLUKA'ya göre 4,5 MeV ve 1 cm numune kalınlığında geçen nötron sayısı oranı B50B20'de %81,22, P50B20'de %82,56, C50B20'de ise %82,23 olarak gerçekleşmiştir. Görüldüğü gibi numunelere B₄C katkısının yapılması nötron geçişini genel olarak azaltmıştır. İki simülasyon koduda genel olarak aynı davranışlarda bulunmuştur. Numune kalınlıklarının artması ile nötron geçişinin azaldığı görülmektedir. 25 cm numune kalınlığında ve 10 MeV enerji değerinde bütün numunelerde nötron geçişi bütün numunelerde %10'nun altına düşmüştür. Bu sonuçta, üretilen B₄C katkılı numunelerin nötron radyasyonu için kullanılabilir olduğunu göstermektedir.

Ayrıca, B₄C katkısının artması ile nötron makroskobik tesir kesitlerinin değerlerini artırmıştır. Bor elementinin nötron etkileşim tesir kesitinin malzeme içerisindeki diğer elementlere göre yüksek olması, bu sonuçları açıklamaktadır. İncelenen diğer parametreye göre OSY değeri B₄C katkısının artması ile azalmıştır ki bu sonuçta nötron geçişi ile uyumlu bir sonuçtur. İncelenen son parametre hızlı nötron uzaklaştırma tesir

kesitidir (Σ_R) . Teorik olarak hesaplanan bu parametre numune içerisinde yer alan elementlerin kütle uzaklaştırma tesir kesiti ve ilgili elementin kısmi yoğunlukları dikkate alınarak belirlenmiştir. Her bir elementin Σ_R değeri toplanarak toplam Σ_R elde edilmiştir. Elde edilen Σ_R değerinin küçük olması numunenin nötronla etkileşme ihtimalinin azaldığını belirtmektedir.

Yapılan radyasyon zırhlama çalışmalarına ek olarak üretilen numunelerin basınç dayanımı, ultra ses geçiş hızı ve Schmidt yüzey sertliği belirlenmiştir. Tablo 4.76 incelendiğinde basınç dayanımı en yüksek olan numunelerin bronz katkılı numuneler olduğu görülmektedir. Daha sonrasında pirinç ve paslanmaz katkılı beton numuneler gelmektedir. SB numunesi ile karşılaştırma yapıldığında bronz katkılı numunelerin tamamı basınç dayanımı noktasında SB numunesinden daha iyi sonuçlar vermektedir. En yüksek basınç dayanımına sahip B50 numunesi SB numunesine göre %214,96 oranında bir artış sağlamıştır. Buna neden olarak beton bileşenleri ile bronz arasında daha homojen bir yapının oluşma ihtimali gösterilebilir.

Yapılan çalışmalara göre ultra ses geçiş hızı (UPV) deneylerinde en yüksek sonucu veren B50 numunesi P50 numunesine göre %14,47, C50 numunesine göre de %25,18 daha iyi sonuç vermiştir. Numuneler arasındaki UPV değerlerinde oluşan farklılığın numunelerde meydana gelen boşlukların neden olduğu söylenebilir.

Yüzey sertliği parametrelerinde ise en yüksek sonucu paslanmaz çelik katkılı numuneler vermiştir. Buna paslanmaz çelik bileşimindeki Ni, Cr, Mo gibi elementlerin kimyasal yapısı sebep olduğu düşünülmektedir.

%50 alaşım içerikli numunelere B₄C katkısı yapıldığında bütün numunelerin basınç dayanımında düşüş gözlenmiştir. Numunelere eklenen B₄C miktarı artıkça UPV ve yüzey sertliği değerleri de azalmıştır. Dolayısı ile B₄C katkılı numunelerin mekanik özelliklerinde düşüş eğilimi gerçekleşmiştir. Çalışılan bütün numunelerin mekanik parametrelerinin, numunelere B₄C eklenmesi ile düştüğü gözlemlenmiştir. Buna neden olarak SB numunesine eklenen B₄C miktarının artması ile numunedeki B₄C'ün kapladığı

yüzey alanının artması gösterilebilir. Bu artış numune üretim aşamasında su/çimento oranının artırılması ile giderilebilmektedit.

Elde edilen bütün bulgular incelendiğinde;

Üretilen alaşım katkılı beton numuneler gama radyasyonuna karşı zırhlamada kullanılabilir.

Gama radyasyon zırhlamada alaşım katkılı beton numunelere B₄C katkısının gama radyasyonu zırhlama kapasitesini düşürdüğü gözlemlenmiştir.

B₄C katkılı numunelerin nötron radyasyonu zırhlamada iyi sonuçlar verdiği ve bu yüzden de nötron radyasyonuna karşı B₄C katkılı beton numuneler kullanılabilir.

Gama radyasyonu zırhlama için 7 adet parametrede de bronz katkılı numunelerin gama radyasyonu zırhlama kapasitesinin daha iyi olduğu belirlenmiştir.

Gama radyasyonu zırhlama kabiliyetlerine göre sıralama yapılacak olursa en iyi radyasyon zırh malzemesi olarak bronz > pirinç > paslanmaz çelik katkılı numuneler olduğu gözlemlenmiştir.

Nötron radyasyonu zırhlamada genel olarak 1,1 MeV, 1,5 MeV, 2 MeV ve 3 MeV enerji değeri hariç olmak üzere çalışılan enerji değerlerinde B₄C katkılı paslanmaz çelik numunelerin daha iyi sonuçlar verdiği gözlemlenmiştir.

Numune kalınlığının ve B₄C katkısının artması ile nötron geçişinin azaldığı görülmüştür. Nötron radyasyonu zırhlama kabiliyetlerine göre sıralama yapılacak olursak 1,1 MeV, 1,5 MeV, 2 MeV ve 3 MeV hariç en iyi nötron radyasyon zırh malzemesi olarak paslanmaz çelik > pirinç > bronz katkılı numuneler olarak sıralanmaktadır.

Alaşım katkılı beton numunelere B₄C katkısının hızlı nötron uzaklaştırma tesir kesitleri sonucunu kısmi yoğunluklar nedeni ile çok etkilemediği ancak numunelerin nötron geçişlerini destekler nitelikte olduğu gözlemlenmiştir.

Üretilen numunelerin basınç dayanımının ve ultra ses geçiş hızı parametrelerinde bronz katkılı numunelerde en yüksek sonuçların olduğu, paslanmaz çelik katkılı numunelerde ise Schmidt yüzey sertliğinin en yüksek sonuçlar olduğu ve bütün numunelerde B₄C katkısının mekanik parametre değerlerini düşürdüğü görülmüştür.

Bütün bu sonuçlar, üretilen katkılı betonların radyasyonun yoğun olduğu alanlarda, nükleer santrallerde, tıbbi uygulama alanlarda, yapan araştırma-geliştirme laboratuvarlarında radyasyon zırhlama açısından alternatif malzeme olarak kullanılabileceğini göstermektedir.

KAYNAKLAR

Abdalla, A. A., Al-Naggar, T. I., Bashiri, A. M. and Alsareii, S. A. (2022). Radiation shielding performance for local granites. *Progress in Nuclear Energy*, 150 (104294).

Abdel-Aziz, M. M., Gwaily, S. E., Makarious, A. S. and El-Sayed Abdo A. (1995). Ethylene-propylene diene rubber/low density polyethylene/boron carbide composites as neutron shields, *Polym. Degrad. Stab.*, 50(2), 235-240.

Abdullah, Y., Yusof, M.R., Muhamad, A., Samsu, Z. and Abdullah, N.E. (2010). Cement-boron carbide concrete as radiation shielding material. *Journal of Nuclear and Related Technologies*, 7(2) 74–79.

Agar, O., Sayyed, M. I., Akman, F., Tekin, H. O. and Kaçal, M. R. (2019). An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. *Nuclear Engineering and Technology*, *51*(3), 853-859.

Agar, O., Tekin, H. O., Sayyed, M. I., Korkmaz, M. E., Culfa, O. and Ertugay, C. (2019). Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral. *Results in Physics*, *12*, 237-243.

Agostinelli, S., Allison, J., Amako, K. A., Apostolakis, J., Araujo, H., Arce, P., ... and Geant4 Collaboration., GEANT4—a simulation toolkit. (2003). *Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 506(3), 250-303.

Ahmed, S. N. (2007). *Chapter 1-Properties and sources of radiation, in Physics and Engineering of Radiation Detection,* Elsevier, p.1-64.

Akkurt, I. and Malidarre, R. B. (2022). Physical, structural, and mechanical properties of the concrete by FLUKA code and phy-X/PSD software. *Radiation Physics and Chemistry*, 193(109958).

Akkurt, I., Al-Obaidi, S., Akyildirim, H. and Günoğlu, K. (2022). Neutron shielding for ²⁵²Cf source: FLUKA simulations and measurements. *Iran Journal Science Technology Transactions A:Science*, 46, 1055–1064.

Akkurt, I., Basyigit, C., Mavi, B., Akkaş, A. ve Günoğlu, K. (2011). Yüksek fırın cüruflu betonların radyasyon soğurma karakteristiklerinin belirlenmesi. *Journal of New World Sciences Academy*,6(4), 1175-1181.

Akman, F., Durak, R., Turhan, M. F. ve Kaçal, M. R. (2015). Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds, *Applied Radiation and Isotopes*, 101, 107-113.

Alfryyan, N., Alrowaili, Z. A., Somaily, H. H., Olarinoye, I. O., Alwadai, N., Mutuwong, C. and Al-Buriahi, M. S. (2022). Comparison of radiation shielding and elastic properties of germinate tellurite glasses with the addition of Ga₂O₃. *Journal of Taibah University for Science*, 16(1), 183-192.

Al-Ghamdi, H., Elsafi, M., Sayyed, M. I., Almuqrin, A. H. and Tamayo, P. (2022). Performance of newly developed concretes incorporating WO₃ and barite as radiation shielding material. *Journal of Materials Research and Technology*, 19, 4103-4114.

Alharshan, G. A., Alrowaili, Z. A., Mahmoud, Z. M. M., Olarinoye, I. O. and Al-Buriahi, M. S. (2022). Effect of $N_{b2}O_5$ inclusion on the radiation shielding efficiency of TeO2–ZnO LiF–NaF glass system. *Radiation Physics and Chemistry*, 196.

Ali, M. A. E., Tawfic, A. F., Abdelgawad, M. A., Mohamed Mahdy, M. and Omar, A. (2022). Gamma and neutrons shielding using innovative fiber reinforced concrete, *Progress in Nuclear Energy*, 145, 104133.

Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, ... and Burkhardt, H. (2016). Recent developments in Geant4 . *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.* 835, 186–225.

Almatari, M., Dong, M. G., Almousa, N., Sayyed, M. I., Khandaker, M. U., Alrashedi, M. F., Elsafi, M. (2022). Study the radiation attenuation properties of ball clay-cementiron slag composites by experimental and theoretical methods. *Radiation Physics and Chemistry*, 200, 110348.

Alshahrani, B., Alrowaili, Z. A., Alsufyani, S. J., Olarinoye, I. O., Mutuwong, C. and Al-Buriahi, M. S. (2022). Determining the optical properties and simulating the radiation shielding parameters of Dy³⁺ doped lithium yttrium borate glasses. *Optik*, 250 (1), 168318.

Alzahrani, J. S., Alothman, M. A., Eke, C., Al-Ghamdi, H., Aloraini, D. A. and Al-Buriahi, M. S.(2021). Simulating the radiation shielding properties of TeO₂–Na₂O–TiO glass system using PHITS Monte Carlo code. *Computational Materials Science*, 196 (110566).

Alzahrani, J.S., Eke, C., Alrowaili, Z. A., Boukhris, I., Mutuwong, C., Bourham, M. A., Al-Buriahi, M.S. (2022). A theoretical study on the radiation shielding performance of borate and tellurite glasses. *Solid State Sciences*, 129, 106902.

Amin, M. N., Ahmad, I., Iqbal, M., Abbas, A., Khan, K., Faraz, M. I., ... and Ullah, S. (2022). Computational al models for investigating the radiation shielding potential of high-density concrete. *Materials*, 15 (13), 4573.

An, J. M., Lin, H., Pun, E. Y. B. and Li, D. S. (2022). Evaluation of gamma and neutron shielding capacities of tellurite glass system with Phy-X simulation software. *Physica B: Condensed Matter*. 634, 413433.

Annunziata, M. F. (2016). *Chapter 10- Radioactivity: introduction and history, from the quantum to quarks*, Boston: Elsevier, 361–389.

Arfa, M. M., Sadawy, M. M., Nooman, M. T., Farag, A. T. M., and El Shazly, R. M. (2022). The influence of heating on mechanical and nuclear properties of reactive powder concrete as a protective shield in nuclear facilities. *Progress in Nuclear Energy*, 143, 104046.

Aygün, B., Şakar, E., Agar, O., Sayyed, M.I., Karabulut, A. and Singh, V. P. (2021). Development of new heavy concretes containing chrome-ore for nuclear radiation shielding applications. *Progress in Nuclear Energy*, 133(103645).

Azreen, N. M., Rashid, R. S. M., Haniza, M., Voo, Y. L. and Amran, Y. H. M. (2018). Radiation shielding of ultra-high-performance concrete with silica sand, amang and lead glass. *Construction and Building Materials*, 172, 370-377.

Babu S. M., Sarathi R., Imai T. and Tanaka T. (2021). Influence of gamma irradiation and water aging on the space charge characteristics of epoxy micro-nano composites. *Polymers*, 13 (6), 964.

Basdevant, J. L., Rich, J. and Spiro, M. (2004). Fundamentals in nuclear physics: From nuclear structure to cosmology, Springer.

Basu, A. ve Aydin, A. (2004). A method for normalization of Schmidt hammer rebound values. *International journal of rock mechanics and mining sciences*, *41*(7), 1211-1214.

Beiser A. (2003). *Chapter 12: Nuclear Transformations. Concepts of Modern Physics* (pdf), Mc Graw-Hill, 432–434.

Bijker, R. and Santopinto, E. (2015). Valence and sea quarks in the nucleon. Journal of Physics. *Conference Series*. 578(1), 012015.

Bilge A. N. ve Tuğrul A. B. (1990). *Endüstriyel Radyografinin Esasları*, İTÜ Rektörlük Ofset Atölyesi, İstanbul.

Böhlen, T. T., Cerutti, F., Chin, M. P. W., Fassò, A., Ferrari, A., Ortega, P. G., ... and Vlachoudis, V. (2014). The FLUKA code: developments and challenges for high energy and medical applications. *Nuclear data sheets*, *120*, 211-214.

Brodsky, A. (1978). CRC Handbook of radiation measurement and protection. Crc Press.

Brown, J. M., Curliss, D., and Vaia, R. A. (2000). Thermoset-layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxies. *Chem. Mater.*, 12 (11)3376–3384.

Chanthima, N., Kaewkhao, J., Limkitjaroenporn, P., Tuscharoen, S., Kothan, S., Tungjai, M., ... and Limsuwan, P. (2017). Development of BaO–ZnO–B₂O₃ glasses as a radiation shielding material. *Radiation Physics and Chemistry*, 137,72-77.

Cheewasukhanont, W., Limkitjaroenporn, P., Sayyed, M.I., Kothan, S., Kim, H. J. and Kaewkhao, J. (2022). High density of tungsten gadolinium borate glasses for radiation shielding material: Effect of WO3 concentration. *Radiation Physics and Chemistry*,192 (109926).

Christensen, D. M., Iddins, C. J. and Sugarman, S. L., (2014). Ionizing radiation injuries and illnesses. *Emergency Medicine Clinics*, 32(1), 245–65.

Chu, V. W. S., Kan, M. W. K., Lee, L. K. Y., Wong, K. C. W., Tong, M. and Chan, A. T. C. (2021). The effect of the magnetic fields from three different configurations of the MRIgRT systems on the dose deposition from lateral opposing photon beams in a laryngeal geometry - A Monte Carlo study. *Radiation Medicine and Protection*, 2 (3), 103-111.

Daungwilailuk, T., Yenchai, C., Rungjaroenkiti, W., Pheinsusom, P., Panwisawas, C. and Pansuk, W. (2022). Use of barite concrete for radiation shielding against gamma-rays and neutrons. *Construction and Building Materials*, 326, 126838.

Davidson, M. (2014). Pioneers in optics: Johann wilhelm ritter and ernest rutherford. *Microscopy Today*, 22(2), 48-51.

Demir, D. and Keleş, G. (2006). Radiation transmission of concrete including boron waste for 59.54 and 80.99 keV gamma rays. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 245(2), 501-504.

Demir, F. (2010). Determination of mass attenuation coefficients of some boron ores at 59.54 keV by using scintillation detector. *Applied Radiation and Isotopes*, 68(1), 175–179.

Dong, M., Zhou, S., Xue, X., Xiating F., Yang, H., Sayyed, M. I., ... and Almousa, N. (2022). Upcycling of boron bearing blast furnace slag as highly cost-effective shield for protection of neutron radiation hazard: An innovative way and proposal of shielding mechanism. *Journal of Cleaner Production*. 355(131817).

Dong, M. G., Xue, X. X., Elmahroug, Y., Sayyed, M. I. and Zaid, M. H. M. (2019). Investigation of shielding parameters of some boron containing resources for gamma ray and fast neutron. *Results in Physics*, 13(102129).

Eid, M. S., Bondouk, I. I., Hosam, Saleh H. M., Omar K. M., Sayyed M. I., El-Khatib, A.M., ... and Mohamed Elsafi M. (2022). Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications. *Nuclear Engineering and Technology*, 54(4),1456-1463.

Eisenbud, M. and Gesell T. (1997). *Environmental Radioactivity: From Naturel, Industrial and Military Sources*. Academic Press, Inc.

Elalaily, N. A., Abou-Hussien, E. M. and Saad, E. A. Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material. *Radiation Effects and Defects in Solids*, 171(12), 840–854.

El-Samrah, M. G., Abreu Zamora, M. A., Novog, D. R. and Chidiac, S. E. (2022). Radiation shielding properties of modified concrete mixes and their suitability in dry storage cask. *Progress in Nuclear Energy*, 148(104195).

El-Sayed A. A., Fathy, I. N., Tayeh B. A. and Almeshal I. (2022). Using artificial neural networks for predicting mechanical and radiation shielding properties of different nano-concretes exposed to elevated temperature. *Construction and Building Materials*, 324 (126663).

El-Sayed Abdo, A. (2002). Calculation of the cross-sections for fast neutrons and gamma-rays in concrete shields. *Annals of Nuclear Energy*, 29(16), 1977–1988.

Esfehani, S. M. R., Zareei, S., Madhkan, M., Ameri, F., Rashiadani, J. and Taheri, A. R. (2021). Mechanical and gamma-ray shielding properties and environmental benefits of concrete incorporating GGBFS and copper slag. *Journal of Building Engineering*, 33, (101615).

Eves B. J., Doutch, J. J., Terry, A. E., Yin H., Moulin, M., Haertlein, V., ... and Squires, A.M. (2021) Elongation rate and average length of amyloid fibrils in solution using isotope-labelled small-angle neutron scattering. *RSC Chemical Biology*, 2, 1232-1238.

Fu X., Ji, Z., Lin,W., Yu, Y. and Wu, T. (2021) The advancement of neutron shielding materials for the storage of spent nuclear fuel. *Science and Technology of Nuclear Installations*, Article ID 5541047.

Galehdari, N. A. and Kelkar, A. D. (2017). Effect of neutron radiation on the mechanical and thermophysical properties of nanoengineered polymer composites. *Journal of Materials Res*earch, 32(2), 426-434.

Gallego, E., Lorente, A. and Vega-Carrillo, H. R. (2009). Testing of a high-density concrete as neutron shielding material, *Nuclear Technology*, 168(2), 399–404.

Gencel, O., Bozkurt, A., E. Kam, E. ve Korkut, T. (2011). Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions. Annals of Nuclear Energy, 38(12), 2719-2723.

Gerward, L., Guilbert, N., Jensen, K. B. and Levring, H., WinXCom—a program for calculating X-ray attenuation coefficients. (2012). *Radiation Physics and Chemistry*, 71(3-4), 653-654.

Giannelis, E. P. (1998). Polymer-layered silicate nanocomposites: Synthesis, properties and applications. *Applied Organometal Chemistry*, 12(10–11), 675–680.

Gökmen, U. Gamma and neutron shielding properties of B₄C particle reinforced Inconel 718 composites. (2022). *Nuclear Engineering and Technology*, 54(3), 1049-1061.

Hager, I. Z., Rammah, Y. S., Othman, H. A., Ibrahim, E. M., Hassan, S. F. and Sallam, F. H. (2019). Nano-structured natural bentonite clay coated by polyvinyl alcohol polymer for gamma rays attenuation. *Journal of Theoretical and Applied Physics*, *13*, 141-153.

Han, D., Kim, W., Lee, S., Kim, H. and Romero, P. (2018). Assessment of gamma radiation shielding properties of concrete containers containing recycled coarse aggregates. *Construction and Building Materials*, 163, 122-138.

Harrison, C., Burgett, E., Hertel, N., E. Grulke, E. and El-Genk, M.S. (2008). Polyethylene/Boron composites for radiation shielding applications. *AIP Conference Proceedings*, 969, 484-491.

Hassanpour M., Faghihi S., Khezripour S., Rezaie M., Dehghanipour P., ... and Khandaker MU. (2022), Introduction of graphene/h-BN metamaterial as neutron radiation shielding by implementing monte carlo simulation. *Materials*,15(19), 6667.

Hassanpour, M., Rezaie, M., Salajegheh, E., Faruque, M. R. I., Khandaker, M. U. and Bradley, D. A. (2021). Studies of the mechanical and neutron shielding features of

concrete by incorporation of green additive materials: Experimental and numerical study. *Radiation Physics and Chemistry*, 191, 109846.

Hayouni Y. (2014). Valorisation Des Déchets Miniers de Fluoro-barytine de Hammam Jedidi Dans L'amélioration Des Performances du Ciment Blanc, Mémoire de master Faculté des Sciences de Gabès, 132.

Heniegal, A. M., Amin, M., Nagib, S. H., Youssef, H. and Agwa, I.S. (2022). Effect of nano ferrosilicon and heavyweight fine aggregates on the properties and radiation shielding of ultra-high performance heavyweight concrete. *Case Studies in Construction Materials*, 17, e01543.

Igashira, M., Kitazawa, H. and Yamamuro, N. (1986). A heavy shield for the gamma-ray detector used in fast neutron experiments. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 245(2-3), 432–437.

Issa, S. A. M., Kumar, A., Sayyed, M. I., Dong, M. G. and Elmahroug, Y. (2018). Mechanical and gamma-ray shielding properties of TeO₂-ZnO-NiO glasses. *Materials Chemistry and Physics*, 212, 12-20.

Jeans, J. (1947). The Growth of Physical Science, Cambridge University Press.

Joseph B. B. and George, S. (2020). The road to radiation safety and ALARA: A review. *Innovative Publication*, 6(4), 89–92.

Kaçal, M. R, Polat, H., Oltulu, M., Akman, F., Agar, O. ve Tekin, H. O. (2020). Gamma shielding and compressive strength analyses of polyester composites reinforced with zinc: an experiment, theoretical, and simulation based study, *Applied Physics A*, 126 (205).

Kaplan, M. F. (1989). *Concrete Radiation Shielding*. John Wiley and Sons, Inc., New York.

Katubi, K. M., Ibraheem, A. A., Alwadai, N., Alrowaili, Z. A., Olarinoye, I. O., Sriwunkum, C., and Al-Buriahi, M. S. (2022). Enhancement on radiation shielding performance of B2O3 + Li2O + ZnO + Na2O glass system. *Radiation Physics and Chemistry*, 201.

Kaur, P., Singh, K. J., Kurudirek, M. and Thakur, S. (2019). Study of environment friendly bismuth incorporated lithium borate glass system for structural, gamma-ray and fast neutron shielding properties. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 223, 117309.

Kaya, D. (2019). Normal Beton ve Özel Amaçlı Betonların Gama Radyasyonunu Zırhlama Özelliklerinin İncelenmesi. (Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Enerji Enstitüsü).

Kebaili, I., Znaidia, S., Alzahrani, J. S., Alothman, M.A., Boukhris, I., Olarinoye, I.O., ... and Al-Buriahi, M.S. (2021). Ge₂₀Se_{80-x}Bi _x ($x \le 12$) chalcogenide glasses for infrared and gamma sensing applications: structural, optical and gamma attenuation aspects. *Journal of Materials Science: Materials in Electronics*, 32, 15509-15522.

Khalaf, M. A., Cheah, C. B., Ramli, M., Ahmed, N. M., Al-Asady, A. M. A., Amal Mohamed A. M., ... and Tangchirapat, W. (2021). Engineering and gamma-ray attenuation properties of steel furnace slag heavyweight concrete with nano calcium carbonate and silica, *Construction and Building Materials*. 267, 120878.

Khan, M. U., Shamsad, A., Akhtar, A. N. and Al-Gahtani H. A. (2020). Shielding performance of heavy-weight ultra-high-performance concrete against nuclear radiation. *Progress in Nuclear Energy*, 130 (103550).

Kharita, M. H., Yousef S. and Alnassar M. (2011). Review on the addition of boron compounds to radiation shielding concrete. *Progress in Nuclear Energy*, 53(2), 207-211.

Kharita, M. H., Takeyeddin, M., Alnassar, M. and Yousef, S. (2008). Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics. *Progress in Nuclear Energy*, 50(1), 33-36.

Konya, J. and Nagy, N.M. (2018). *Nuclear and Radio-chemistry*, Amsterdam, Netherlands, 74–75.

Kornmann, X., Lindberg, H. and Berglund, L. A. (2001) Synthesis of epoxyclay nanocomposites: influence of the nature of the curing agent on structure. *Polymer*, 42(4), 1303-1310.

Krane, K. S. (1988). Introductory Nuclear Physics. John Wiley & Sons, 246–269.

Krane, K.S., (2001) Nükleer Fizik 1. Cilt, (Çeviri Editörü: Başar Şarer). Palme Yayıncılık, Ankara.

Kwan-Hoong Ng, K. (2003). Non-ionizing radiations sources, biological effects, emissions and exposures. Proceedings of the international conference on non-ionizing

radiation at UNITEN (ICNIR2003). Electromagnetic Fields and Our Health, 20-22 Octaber 2003.

L'Annunziata M.F.(2003). Handbook of Radioactivity Analysis. Elsevier Science, ABD.

Li, X., Cong, M., Yang, G. and Su, W. (2021). Designing neutron shield material for D-T neutron generator, *Journal of Physics: Conference Series*, 1739, 012012.

Libeesh, N. K., Naseer, K. A., Arivazhagan, S., El-Rehim, A. F. A., Al-Misned, G. and Tekin, H.O. (2022). Characterization of Ultramafic–Alkaline–Carbonatite complex for radiation shielding competencies: An experimental and Monte Carlo study with lithological mapping. *Ore Geology Reviews*, 142 (104735).

Lindquist, K. (2009). *Handbook of Neutron Absorber Materials for Spent Nuclear Fuel Transportation and Storage Applications*. Electric Power Research Institute.

Luo, L., Chen, Z., Tao, Q., Xie, L., Jin, D., Li, Z. and Deng, D. (2022). Effects of high temperatures on the splitting tensile strength and gamma ray shielding performance of radiation shielding concrete. *Construction and Building Materials*, 343, 127953.

Roslan, M. K. A., Ismail, M., Kueh, A.B.H, Zin, M. R. M. High-density concrete: exploring Ferro boron effects in neutron and gamma radiation shielding, *Constr. Build. Mater.*, 215(2019), 718-725.

Madbouly, A. M., Sallam, O.I., Issa, S. A. M., Rashad, M., Hamdy, A., Tekin, H. O. and Zakaly, H. M. H. (2022). Experimental and FLUKA evaluation on structure and optical properties and γ -radiation shielding capacity of bismuth borophosphate glasses. *Progress in Nuclear Energy*, 148, 104219.

Mahmoud, M. E., El-Khatib, A. M., Badawi, M. S., Rashad, A. R., El-Sharkawy, R. M. and Thabet, A. A. (2018). Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. *Radiation Physics and Chemistry*, 145, 160–173.

Majed, D., Silarski, M. and Paryzch S. (2021). Design, structure, microstructure and gamma radiation shielding properties of refractory concrete materials containing Ba- and Sr-doped cements, *Materials Chemistry and Physics*, 260(124095).

Malkapur, S.M., Ghodke, S. S., Sujatha, P. N., Singh, Y., Shivakumar, K. S., Sen, M., ... and Pulgur, A.B. (2021). Waste-polymer incorporated concrete mixes for neutron and gamma radiation shielding, Progress in Nuclear Energy, 135, 103694.

Manjunathaguru, V. and Umesh, T. K. (2009). Simple parameterization of photon mass energy absorption coefficients of H-, C-, N- and O- based samples of biological interest in energy range 200-1500 keV. *Pramana J. Phys.*, 72(2), 375-387.

Mann, K. S. and Mann, S.S. (2021). Py-MLBUF: Development of an online-platform for gamma-ray shielding calculations and investigations. *Annals of Nuclear Energy*, 150, 107845.

Manohara, S. R., Hanagodimath, S. M., Thind, K. S. and Gerward, L. (2008). On the effective atomic number: a comprehensive set of formulas for all types of materials and energies above 1 keV. *Nuclear Instruments and Methods in Physics Research B*. 266, 3906-3912.

Martin, J. E. (2006). *Pyhsics for Radiation Protection: a handbook*, Wiley-WHC, Weinheim.

Masoud, M. A., Kansouh, W. A., Shahien, M. G., Sakr, K., Rashad, A. M. and Zayed, A. M. (2020). An experimental investigation on the effects of barite/hematite on the radiation shielding properties of serpentine concretes. *Progress in Nuclear Energy*, 120(103220).

McCall, R. C. (1997). Shielding for thermal neutrons. Medical Physics, 24(1), 135–136.

Mehta, P. K. and Monteiro, P. J. M. (2006). *Concrete: Microstructure, Properties and Materials*, The Mcgraw Hill Companies, Inc.

Meyerhof, W. E. (1967). Elements of Nuclear Physics. McGraw-Hill series, New York, USA.

Mhamdi, S. (2010). *Etude Minéralurgique Des Rejets Miniers de Hammam Jedidi*, Mémoire de master, Faculté des Sciences de Tunis, 126.

Moradllo, M. K., Chung, C-W., Keys, M. H., Choudhary, A., Reese, S. R., and Weiss, W. J. (2020). Use of borosilicate glass powder in cementitious materials: Pozzolanic reactivity and neutron shielding properties, *Cement and Concrete Composites*, 112, 103640.

Mortazavi, S. M. J., Mosleh-Shirazi, M. A., Roshan-Shomal, P., Raadpey N. and Baradaran-Ghahfarokhi M. (2010). High-performance heavy concrete as a multi-purpose shield. *Radiation Protection Dosimetry*, 142(2-4), 120-124.

Moulder, J. E. (2014). *Static Electric and Magnetic Fields and Human Health:* Questions and Answers. Electromagnetic Fields and Human Health, Medical College of Wisconsin.

Murty, M. V. R. and Cooper, B. H. (1999). Instability in molecular beam epitaxy due to fast edge diffusion and corner diffusion barriers. *Phys. Rev. Lett*, 83(352).

Nagaraj, N., Manjunatha, H. C., Vidya, Y. S., Seenappa, L., Sridhar, K. N. and Gupta, P. S. D. (2022). Investigations on lanthanide polymers for radiation shielding purpose. *Radiation Physics and Chemistry*, 199, 110310.

Nambiar, S. and Yeow, J.T.W. (2012). Polymer-composite materials for radiation protection. *Applied Materials & Interfaces*, 4(11), 5717–5726.

Nazaroff, W. W. and Nero, A. V.(1988) Radon and its decay products indoor air, United States.

Nikbin, I. M., Shad, M., Jafarzadeh, G. A. and Dezhanpanah S.(2019). An experimental investigation on combined effects of nano-WO₃ and nano-Bi₂O₃ on the radiation shielding properties of magnetite concretes. *Progress in Nuclear Energy*, 117(103103).

Okuno, K. (2005). Neutron shielding material based on colemanite and epoxy resin. *Radiation Protection Dosimetry*, 115(1–4), 258–261.

Olarinoye, I. O., Alomairy, S., Sriwunkum, C. and Al-Buriahi, M.S.(2021). Effect of Ag_2O/V_2O_5 substitution on the radiation shielding ability of tellurite glass system via XCOM approach and FLUKA simulations, *Physica Scripta*, 96 (6), 065308.

Omran, O. L., Sadrmomtazi A. and Nikbin I. M. (2019). A comprehensive study on the effect of water to cement ratio on the mechanical and radiation shielding properties of heavyweight concrete. *Construction and Building Materials*, 229(116905).

Omran, O. L., Ali, S. And Nikbin, I. M. (2019). A comprehensive study on the effect of water to cement ratio on the mechanical and radiation shielding properties of heavyweight concrete, *Construction Building Materials*, 229, 116905.

Oray O. (2007). Nükleer Enerji ve Çevre Bitirme Ödevi. İTÜ Kimya Metalurji Fakültesi.

Oto, B. ve Gür, A. (2013). Gamma-ray shielding of concretes including magnetite in different rate. *International Journal of Physical Sciences*, 8(8), 310-314.

Öz, A., Bayrak, B., Kavaz, E., Kaplan, G., Çelebi, O., Alcan, H.G. ve Aydın, A.C. (2022). The radiation shielding and microstructure properties of quartzic and metakaolin based geopolymer concrete. *Construction and Building Materials*, 342, Part B, 127923.

Özdemir, T., Akbay, I. K., Uzun, H. ve Reyhancan, I. A. (2016). Neutron shielding of EPDM rubber with boric acid: mechanical, thermal properties and neutron absorption tests. *Progress in Nuclear Energy*, 89, (102–109).

Papachristoforou, M. and Papayianni, J. (2018). Radiation shielding and mechanical properties of steel fiber reinforced concrete (SFRC) produced with EAF slag aggregates. *Radiation Physics and Chemistry*, 149, 26-32.

Park, J., Her, S., Cho, S., Woo, S. M. and Bae, S. (2022). Synthesis and characterization of Polyethylene/B₄C composite, and its neutron shielding performance in cementitious materials: Experimental and simulation studies. *Cement and Concrete Composites*,129, 104458.

Piotrowski, T. (2021). Neutron shielding evaluation of concretes and mortars: A review. *Construction and Building Materials*, 277, 122238.

Polat, R. ve İçelli, O. (2010). Measurement of the effective atomic numbers of compounds with cerium near to the absorption edge. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 615 (2), 201-210.

Prabhu, N. S., Hegde, V., Wagh, A., Sayyed, M. I., Agar, O. and Kamath, S. D. (2019). Physical, structural and optical properties of Sm³⁺ doped lithium zinc alumino borate glasses, *Journal of Non-Crystalline Solids*, 515, 116-124.

Prokhorenko, E. M., Klepikov, V.F., Lvytvnenko, V.V., Zakharchenko, A. A. and Khazhmuradov, M. A. (2015). Modification of composite materials used for radiation protection. *International Journal of Engineering and Innovative Technology (IJEIT)*, 4 (9).

Roslan, M. K. A, İsmail, M., Kueh, A.B.H. and Zin, M.R.M. (2019). High-density concrete: Exploring Ferro boron effects in neutron and gamma radiation shielding. *Construction and Building Materials*, 215, 718-725.

Salimi, M., Ghal-Eh, N. and Amirabadi, E. A. (2018). Characterization of a new shielding rubber for use in neutron–gamma mixed fields. *Nucl. Sci. Tech.*, 29(36).

Saloman, E. B. and Hubbell, J.H. (1987). Critical Analysis of Soft X-ray Cross Section Data, *Nucl. Instr. Meth.* 255(1-2), 38-42.

Sayyed, M. I., Tekin, H. O., Kılıcoglu, O., Agar, O. and Zaid, M. H. M. (2018). Shielding features of concrete types containing sepiolite mineral: Comprehensive study on experimental, XCOM and MCNPX results. *Results in Physics*, 11, 40-45.

Sayyed, M. I., Almousa, N. and Elsafi, M. (2022). Green conversion of the hazardous cathode ray tube and red mud into radiation shielding concrete. *Materials*, 15(15), 5316.

Seenappa, L., Manjunatha, H. C., Sridhar, K. N. and Hanumantharayappa C. (2018). Gamma, X-ray and neutron shielding properties of polymer concretes. *Indian Journal of Pure & Applied Physics*, 56 (05), 383-391.

Seltborg, P., Polanski, A., Petrochenkov, S., Lopatkin, A., Gudowski, W. and Shvetsov, V. (2005). Radiation shielding of high-energy neutrons in SAD. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 550(1-2), 313–328.

Shultis, J. K. and Faw R. E. (2000). *Radiation shielding*, La Grange Park, IL: American Nuclear Society. Inc.

Singh, T., Kaur, P. and Singh, P. S. (2007) A study of photon interaction parameters in some commonly used solvents. *J.Radiol.Prot.*, 27(1).

Singh, V. P. and Badiger, N. M. (2014). Gamma ray and neutron shielding properties of some alloy materials. *Annals of Nuclear Energy*, 64, 301-310.

Singh, V. P., Badiger, N. M. and Kaewkhao, J. (2014). Radiation shielding competence of silicate and borate heavy metal oxide glasses: Comparative study. *Journal of Non-Crystalline Solids*, 404, 167-173.

Singh, V. P., Badiger, N. M., Chanthima, N. and Kaewkhao, J. (2014). Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. *Radiation Physics and Chemistry*, 98, 14–21.

Singh, V. P., Tekin, H. O., Badiger, N. M., Manici, T. and Altunsoy, E.E. (2018). Effect of heat treatment on radition shielding properties of concretes. *Journal of Radition Protection and Research*, 43 (1), 20-28.

Storm, E. and Israel, H. I. (1970). Photon Cross Sections from 1 keV to 100 MeV for Elements Z=1 to Z=100, Atomic Data and Nuclear Data Tables, 7(6), 565-681.

Stuewer, R.H. (1986). *Gamow's theory of alpha- decay". In: Ullmann-Margalit, E. (eds) The Kaleidoscope of Science.* Boston Studies in the Philosophy of Science, 94.

Sukegawa, A. M., Anayama, Y., Okuno, K., Sakurai S. and Kaminaga A. (2011). Flexible heat resistant neutron shielding resin. *Journal of Nuclear Materials*, 417, 850–853.

Svikis, V. D. (December 1963–January 1964). Dense lithium fluoride for gamma-ray-free neutron shielding. *Nuclear Instruments and Methods*, 25, p. 93–105.

Şahin L. (2010). Parçacıklar ve Radyasyonun madde ile etkileşmesi, İstanbul Üniversitesi.

Tamayo, P., Thomas, C., Rico, J., Pérez, S. and Mañanes, A. (2022). Radiation shielding properties of siderurgical aggregate concrete. *Construction and Building Materials*, 319, 126098.

Taylor, J. R.; Zafiratos, C. D. and Dubson, M. A. (2004). *Modern Physics for Scientists and Engineers*. Prentice Hall.

Tekin, H. O., Sayyed, M. I. and Issa, S. A. M. (2018). Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO₃ and Bi₂O₃ micro and nano particles using MCNPX code. *Radiation Physics and Chemistry*, 150, 95–100.

Tekin, H. O., Singh, V. P. and Manici, T. (2017). Effects of micro-sized and nano-sized WO₃ on mass attenauation coefficients of concrete by using MCNPX code. *Applied Radiation and Isotopes*, 121, 122-125.

Temir, A., Zhumadilov, K. S., Zdorovets, M. V., Korolkov, I. V., Kozlovskiy, A., and Trukhanov, A. V. (2021). Synthesis, phase transformations, optical properties and efficiency of gamma radiation shielding by Bi2O3-TeO2-WO3 ceramics. *Optical Materials*, *113*, 110846.

Tuna, T., Eker, A. A. ve Kam., E. (2021). Neutron shielding characteristics of polymer composites with boron carbide. *J. Korean Physical Society*, 78, 566–573.

Tuzluca, F. N. (2007). *Bazı elementlerin L tabakasından M ve N tabakasına boşluk geçiş ihtimallerinin ölçülmesi.* (Yüksek Lisans Tezi, Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü).

Types and sources of radiation - Canadian Nuclear Safety Commission, Erişim Tarihi: 05.03.2023.

Velascoa, L. A. E., León-Martínez, H. A. D., Murillo, C. G. H., Carrillo, H. R. V., Contreras, J. R. M., Barba, V. P. and Ortiz, A. S. (2022). Radiation shielding and dosimetric parameters of mexican artisanal bricks. *Applied Radiation and Isotopes*, 188 (110355).

Venugopal, V. and Bhagdikar, P. (2013). De broglie wavelength and frequency of scattered electrons in the compton effect. *Physics Education*, 29(1).

Waly, E. A. and Bourham M. A. (2015). Comparative study of different concrete composition as gamma-ray shielding materials. *Annals of Nuclear Energy*, 85, 306-310.

Wang, J., Li, G. and Meng, D. (2014). Evaluation of the performance of peridotite aggregates for radiation shielding concrete. *Annals of Nuclear Energy*, 71, 436–439.

Wei, H., Lou, L., Yang, Z., He, R., Fan, J., Zhang, K., and Yang, W. (2021). Multifunctional composites silicone rubber/paraffin@ lead tungstate with different core/shell ratio for thermal regulation and gamma shielding. *Journal of Energy Storage*, *36*, 102363.

Weisstein, E.W. (2014). "Radiation", Eric Weisstein's World of Physics, Wolfram Research. Retrieved 11.

Wood, J. (1982). *Computational Methods in Reactor Shielding*. Pergamon Press, Inc., New York, USA.

Yaltay, N., Ekinci, C. E., Çakır, T. and Oto, B. (2015). Photon attenuation properties of concrete produced with pumice aggregate and colemanite addition in different rates and the effect of curing age to these properties. *Progress in Nuclear Energy*, 78, 25-35.

Yastrebinsky, R. N., Pavlenko, V. I., Karnauhov, A. A., Cherkashina, N. I., Yastrebinskaya, A. V., and Gorodov, A. I. (2021). Radiation resistance of a structural material based on modified titanium hydride. *Science and Technology of Nuclear Installations*, Article ID 6658431.

Yin S., Wang H., Wang S., Zhang J., and Zhu Y. Effect of B₂O₃ on the radiation shielding performance of telluride lead glass system. *Crystals*. 12(2), 178.

Yonphan, S., Chaiphaksa, W., Kalkornsurapranee, E., Tuljittraporn, A., Kothan, S., Kaewjaeng, S., ... and Kaewkhao, J. (2022). Development of flexible radiation shielding materials from natural Rubber/Sb2O3 composites. *Radiation Physics and Chemistry*, 200, 110379.

Zalegowski, K., Tomasz P., Garbacz, A. and Adamczewski, G. (2020). Relation between microstructure, technical properties and neutron radiation shielding efficiency of concrete. *Construction and Building Materials*, Volume 235, 117389.

Zayed, A. M., Masoud, M. A., Rashad, A. M., El-Khayatt, A. M., Sakr, K., Kansouh, W. A. and Shahien, M.G. (2020). Influence of heavyweight aggregates on the physicomechanical and radiation attenuation properties of serpentine-based concrete. *Construction and Building Materials*, 260(120473).

Zeyad, A. M., Hakeem, I. Y., Amin, M., Tayeh, B. A. and Agwa, I. S. (2022). Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding. *Journal of Building Engineering*, 58(104960).

Nükleer tıp uygulamaları için bir örnek. (https://www.nrc.gov/about-nrc/radiation/around-us/sources/nat-bg-sources.html). Erişim Tarihi: 13.01.2023.

Radyasyon barındıran bazı endüstriyel kaynakların gösterimi. (http://nuclearsafety.gc.ca/eng/resources/radiation/introduction-to-radiation/types-and-sources-of-radiation.cfm). Erişim Tarihi: 03.02.2023.

Radyasyon barındıran bazı nükleer yakıt çevrimi elemanlarının gösterimi. (http://nuclearsafety.gc.ca/eng/resources/radiation/introduction-to-radiation/types-and-sources-of-radiation.cfm). Erişim Tarihi: 05.02.2023.

Radyasyon türüne göre uygulanabilen zırhlama malzemeleri. (https://www.afad.gov.tr/kbrn/radyasyon-kaynaklari). Erişim Tarihi: 11.02.2023.

Radyasyon maruziyetini etkileyen temel faktörler. (https://www.afad.gov.tr/kbrn/radyasyon-kaynaklari). Erişim Tarihi: 11.02.2023.